透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

Ce0.9Gd0.1O1.95複合La0.6Sr0.4CoxCu1-xO3-δ為電化學觸媒電池陰極進行模擬廢氣中氮氧化物分解之研究

Study of La0.6Sr0.4CoxCu1-xO3-δ and Ce0.9Gd0.1O1.95 Composite as Cathode of Electrochemical-Catalytic Cell on Decomposition of Nitric Oxide in Simulated Exhaust

指導教授 : 黃大仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


富氧燃燒引擎(lean-burn engines)雖可提高燃料使用率,但所排放之廢氣成分中的氮氧化物處理是一大難題。為了發展更有效處理氮氧化物技術,本研究使用鈣鈦礦結構材料La0.6Sr0.4CoxCu1-x (LSCCu),複合具有導氧離子性質之材料氧化釓參雜氧化鈰(Ce0.9Gd0.1O2-x, GDC)作為電化學觸媒電池(electrochemical-catalytic cell)之陰極材料來進行模擬廢氣中氮氧化物分解之研究。 本研究所使用之電觸媒分兩種型式,其中鈕扣型電觸媒操作溫度為400 oC,目的探討不同氮氧化物濃度、氣體流速、氧氣濃度以及陰極材料摻混GDC與否對氮氧化物分解之影響。管型電觸媒操作溫度為30 oC,探討陽極氣體流動與停滯、不同種類氣體對於氮氧化物分解的影響。陰極所通入模擬富氧燃燒引擎廢氣組成為氮氧化物(NOx)、氧氣(O2)、二氧化碳(CO2)、水氣(H2O)、二氧化硫(SO2)。 實驗結果顯示於陰極材料中摻混GDC時對於氮氧化物分解有助益,且當模擬廢氣中氧氣含量越高時,也可提升電觸媒效果。並且陽極氣體為H2且流速為停滯時所能處理氮氧化物的效果也較佳,這對於未來發展電觸媒以去除富氧燃燒引擎所排放廢氣之氮氧化物是具有相當大的幫助。

並列摘要


Although lean-burn engines can improve fuel utilization, there is a problem on the exhaust of nitrogen oxide (NOx). In order to solve this problem, this study used perovskite structure materials La0.6Sr0.4Co x Cu1-x (LSCCu) and Ce0.9Gd0.1O2-x (GDC) composite as cathode material for electrochemical-catalytic cell (ECC) on the decomposition of nitrogen oxides in simulation of exhausted gas. There are two types ECC in this study: button type ECC and tubular type ECC. This study have experiments on button type ECC to find the impact on different NOx concentration, gas flow rate and the influence of oxygen concentration to decomposition NOx when composite different ratio of GDC in cathode. The experiment was operating under 400oC. Tubular type ECC was experimented for understand anode gas flow or stagnant and different types of gases while NOx was decomposed. The operating temperature was 30oC. The simulation of lean-burn combustion engine exhausted gas was composed with NOx, oxygen, carbon dioxide, water vapor and sulfur dioxide. The results show that mixing GDC in the cathode material for the decomposition of NOx is useful, and with more oxygen in the simulated exhausted gas are also improve NOx decomposition. When the anode gas was H2 and flow rate is stagnant, it also improves NOx decomposition. This results are a considerable help for future development of ECC to remove lean-burn combustion engine exhaust emissions of nitrogen oxides.

並列關鍵字

無資料

參考文獻


1. Brunekreef, B. and S.T. Holgate, Air pollution and health. The Lancet, 2002. 360(9341): p. 1233-1242.
2. Roy, S., M.S. Hegde, and G. Madras, Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p. 2283-2297.
3. Shin’ichi, M., Recent advances in automobile exhaust catalysts. Catalysis Today, 2004. 90(3-4): p. 183-190.
4. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
5. K, K., Electrochemical DeNOx in solid electrolyte cells—an overview. Applied Catalysis B: Environmental, 2005. 58(1-2): p. 33-39.

延伸閱讀