透過您的圖書館登入
IP:18.188.108.54
  • 學位論文

矽化鈦奈米結構的成長與特性研究

Synthesis and Properties of the Titanium Silicide Nanostructures

指導教授 : 陳力俊

摘要


一維結構奈米材料如奈米線、奈米管、奈米帶由於具有特殊的光學、電子及機械性質因此近年來受到大家廣泛的重視。本研究以合成新穎的矽化鈦奈米結構材料為主題,並針對合成出的奈米結構進行分析鑑定與成長機制的探討,同時量測矽化鈦奈米材料獨特的性質。 本研究利用化學氣相反應的方式來成長矽化鈦奈米結構。當鈦金屬基板溫度控制在900 ℃時,可在鈦金屬片上生成Ti5Si4棒狀結構,且針對Ti5Si4奈米棒的場發性質及電性進行量測。當鈦金屬基板溫度在800 ℃的情況下,可以成長出Ti5Si4二維奈米網狀結構。利用穿透式電子顯微鏡細部分析網狀結構,發現它的成長方向是沿著[100]及[010]兩個相同晶格常數的對稱軸進行成長。在不同成長時間下觀察,推測二維奈米網狀結構是由分枝狀的奈米線逐漸成長所形成的。 金屬鹵化物近幾年常被利用在成長矽化物奈米結構上,由於它相較於一般的金屬粉末具有低熔點、高活性及輕微蝕刻等特性,因此可以降低反應時的溫度及簡化製程設備。本研究利用氟化鈦粉末(TiF4)做為前驅物,在矽基板上成長C54-TiSi2奈米線,並針對它的電性與場發性質進行量測。反應初期會先在矽基板上先形成一層C54-TiSi2薄膜,進而在薄膜上方再生成奈米線。

並列摘要


One dimensional nanostructures such as nanowires, nanotubes, nanobelts have been extensively studied because of the peculiar optical, electrical and mechanical properties. In the present research, we synthesized the novel titanium silicide nanostructures, identified the structures and elucidated the growth mechanisms. In addition, the unique properties of the nanostructures were investigated. A vapor transport and condensation method was used to grow the titanium silicide nanostructures. Ti5Si4 nanobats grew on the titanium substrate at 900 ℃. The electrical transport and field emission properties of the nanobats were measured. Two-dimensional (2D) Ti5Si4 network structures were fabricated on the titanium substrate at 800 ℃. The growth directions of the network are along the two equivalent symmetric axes [100] and [010] with the same lattice constant. The 2D network structures were likely developed from the branched nanowires. Titanium tetrafluoride (TiF4) precursor was utilized to synthesize the C54-TiSi2 nanowires on the silicon substrate. The C54-TiSi2 thin film was formed on the silicon substrate as the seed layer. The C54-TiSi2 nanowires then grew above the seed layer with a thickness of 1 µm on the silicon substrate. The electrical transport and field emission properties of the nanowires were investigated.

並列關鍵字

Titanium Silicide Metal Silicide Nanowire Nanobat Network

參考文獻


1.3 Hah, J. H.; Mayya, S.; Hata, M.; Jang, Y. K.; Kim, H. W.; Ryoo, M.; Woo, S. G.; Cho, H. K.; Moon, J. T., “Converging lithography by combination of electrostatic layerby layer self-assembly and 193 nm photolithography: top-down meets botton-up,” J. Vac. Sci. Technol. B. 2006, 24, 2209-2213.
1.4 Alivisatos, P., “Semiconductor clusters, nanocrystals and quantum dots,” Science 1999, 271, 933-934.
1.5 Krans, J. M.; Rutenbeek, J. M. V.; Jongh, L. J. D., “The signature of conductance quantization in metallic point contacts,” Nature 1995, 375, 767-768
1.6 Leobandung, E.; Guo, L.; Wang, Y.; Chou, S. Y., “Observation of quantum effects and coulomb blockade in silicon quantum dot transistors at temperature over 100K,” Appl. Phys. Lett. 1995, 67, 938-940.
1.7 Markovich, G.; Collier, C. P.; Heath, J. R., “Architectonic quantum dot solids,” Acc. Chem. Res. 1999, 32, 415-423.

延伸閱讀