透過您的圖書館登入
IP:3.144.33.41
  • 學位論文

藉微波電漿輔助化學氣相沈積系統合成氧化鈦奈米材料與特性分析

指導教授 : 施漢章

摘要


當材料在奈米尺度時,會有不同於以往的尺寸效應,不論在光性、電性、磁性方面都有別以往的效果產生。鈦是一個重要的過渡金屬元素,它有高熔點以及低密度的特性。氧化鈦則常被使用於光催化觸媒、感測器、發光及發電材料,用途相當廣泛。在本研究中,利用微波電漿輔助化學氣相沈積法,合成氧化鈦的一維奈米結構。氧化鈦是以奈米棒的形貌出現,長度兩百到數百奈米,橫截面的直徑20-30奈米相當的細,可以大量提升整體材料的表面積。不論是利用金或是不鍍觸媒,都可以在鍍有鈦輔助層的多晶氧化鋁基板上合成大量的氧化鈦。通入的氧氣氣體流量對於氧化鈦生成的形貌有很大的影響。 掃描式電子顯微鏡可以幫我們了解到氧化鈦的形態以及成長機制;在製程不同的時間點觀察掃描式電子顯微鏡的影像,推論氣-固機制是被認為較有可能的成長機制。X光繞射和穿透式電子顯微鏡幫我們確認了氧化鈦的結構為二氧化鈦金紅石相(Rutile phase)。電子能譜分析(XPS)幫我們瞭解二氧化鈦的鍵結情形。陰極發光的量測可以了解到我們合成出的氧化鈦其中的缺陷結構和能帶分佈以及可發出藍綠色光及紅外光的波長。

關鍵字

奈米棒 二氧化鈦 微波電漿

並列摘要


When in nano-scale, materials bear different characteristics, suck as optical, electrical, and magnetic properties. Titanium is an important transition metal; it has a very high melting point and low mass density. Titania are widely used in photo-catalysts, gas sensors, photochromic and electochromic materials. In this research, We synthesize Titania nano structure by MPECVD (microwave plasma enhanced chemical vapor deposition). The morphology of Titania is rods. Its thinness, length, and width of cross-section are respectively several hundreds nanometer, and 20-30nm. Large amounts of single-crystal TiO2 nanorods are obtained on either poly-crystal Al2O3 substrate with Ti buff layer or using Au at catalysts. It has large effects on the morphology of TiO2 by changing reaction time and gas flowing rate. By using scanning electron microscopy, we can see the morphology and growing mechanism of Titania. X-ray and transmission electron microscopy indicated the structure of Titania was Rutile phase. In order to understanding binding status of Titania, we choose XPS for measuring. Cathodoluminescene can help us to understand the defect state of our Titania and also indicate that the ours shows great blue and infrared peak.

並列關鍵字

nanorod Titania MPECVD

參考文獻


10. B. Lewis, in Crystal Growth(Ed: B. R. Pamplin), Pergamon, Oxford, pp.23-63 (1980)
12. Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, P. Yang, Chem. Eur. J. 8, 1260 (2002)
16. Lee et al.,Appl. Phys. Lett.,Vol.81,No4,22 Jul2002
18. X. Xiang et al.,Chem.Phys. Lett.378 (2003) 660-664
19. Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, No. 1, 9 (2003)

延伸閱讀