透過您的圖書館登入
IP:18.221.236.224
  • 學位論文

高深寬比多層金屬製程技術應用在單軸線性定位微鏡面陣列

Multilayer High Aspect Ratio Metal Technology & its Application in Linear Positioning Micromirror 1D array

指導教授 : 范龍生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微系統被認為是二十一世紀最重要的技術之一,近年來微小元件的設計與開發越來越為重要,隨著元件複雜度增加,製程的複雜度也之增加,然而傳統的微加工技術,如體型微加工技術、面型微加工技術、深蝕刻製程(DRIE)等技術,製作多層堆疊高深寬比結構是相當困難的。 本研究結合微電鍍技術、化學機械研磨開發出高深寬比多層金屬製程平台。透過此製程平台,可製作任意堆疊幾何形狀、小於1mm任意高度的複雜3D元件。此製程平台可以開發出一套標準製程,將不同元件整合在同一片晶圓上,對於未來製作微系統而言,是一套相當具有前瞻實用性製程。 本研究透過模擬軟體,設計出扭轉角可達±5°,以垂直式梳狀致動器致動之微鏡面陣列,其中每一個鏡面可獨立控制。與矽結構相比,高深寬比多層金屬製程能提供較為堅固、電磁特性較好之元件。本研究推導出製程的設計規範(Design Rule),以最佳化的參數,成功的製作出單軸線性定位微鏡面陣列。

並列摘要


MEMS technology is one of the most important technology in 21st century. Recently, the design and development of micro-device become more and more important. As the complication of the device increases, the micro-fabrication becomes more difficult. Traditional MEMS technology such as bulk micromachining, surface micromachining, DRIE cannot be used to fabricate multilayers high aspect ratio structures. After combing the micro-electroplating and chemical mechanical polishing (CMP) technology, the multilayer high-aspect-ratio metal technology is successfully developed in this study. This technology is capable of fabricating a complicated three -dimensional microdevices with arbitrary stacked geometry and less than 1mm arbitrary height. This technology can be further developing into a standard process to integrate different device into single wafer. It is a very useful process to fabricate advanced microsystems in the future. Using simulation softwares, micromirror arrays actuated by vertical comb drives are designed to rotate within the rotation range over ±5°. Each mirror of the micromirror array can be individual controlled linearly. Comparing with silicon structure, the multilayers high aspect ratio metal technology offers more robust and better electromagnetic performance devices. By first developing the design rules, linear positioning micromirror 1D arrays are successfully fabricated with optimized process condition.

參考文獻


[2] K. E. Peterson, “Silicon torsional scanning mirror,” IBM J. Res. Develop. , vol. 24, no. 5, pp. 631–637, 1980.
[4] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM micromirror array technology of large optical crossconnects,” Proc. SPIE, vol. 4178, pp.320-324, 2000
[5] H. Toshiyoshi, W. Piyawattanametha, C.T. Chan, and Ming C. Wu, “Linearization of electrostatically actuated surface micromachined 2-D optical scanner,” Journal. of Microelectromechanical Systems, vol. 10, No. 2, June ,2001
[7] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators A, vol. 21, 328, 1990
[8] J. A. Yeh, C.Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric vertical comb drive,” J. Microelect. Syst., vol. 9, no. 1, pp. 126–135, Mar. 2000

延伸閱讀