透過您的圖書館登入
IP:3.137.157.45
  • 學位論文

增強型p型氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製

Fabrication and Characterization of Enhancement-mode p-GaN/AlGaN/GaN HEMTs

指導教授 : 黃智方

摘要


本篇論文中,我們選用矽基板上磊晶p型氮化鎵/氮化鋁鎵/氮化鎵試片製作增強型高電子遷移率電晶體,主要於閘極區域利用高濃度的p型氮化鎵與底層氮化鋁鎵/氮化鎵形成PN接面的特性,空乏二維電子氣通道使通道關閉,藉此實現增強型元件。當元件通道長度2µm,閘極至源極長度5µm,閘極至汲極長度7µm時,量得臨界電壓值(Vth)為0.3V,轉移電導值為45mS/mm,導通阻抗值為3.43mΩ‧cm^2,以及不錯的電流開關比(Ion/off ≈10^8)。 在元件關閉崩潰特性方面,利用磊晶較厚的緩衝層(4.2µm), 減少基板漏電路徑,同時提升垂直方向承受電壓能力。在基板為浮動電位並且浸泡在冷卻液的條件下,量測結果顯示,閘極至汲極長度為60µm元件,獲得最高崩潰電壓值為2760V。而閘極至汲極長度為20µm元件,則有最佳評比效能BFOM值604MW/cm^2,表示崩潰電壓與導通電阻達到最佳的平衡。最後,我們觀察到汲極電流呈現不穩定的現象,有別於表面與內部缺陷所導致的電流衰減,故嘗試分析並加以解釋可能成因。

並列摘要


In this thesis, enhancement-mode p-GaN/AlGaN/GaN HEMTs on a silicon substrate were fabricated. The p-type doped GaN and AlGaN/GaN barrier junction can be considered as a PN junction, so using p-type GaN as gate is able to deplete the 2DEG channel at a Vg=0V, thus yielding a normally-off device. For the on-state characteristics, the threshold voltage (Vth) and the maximum transconductance (Gm,max) for the device with 2μm Lch, 5μm Lgs and 7μm Lgd is 0.3V and 45mS/mm. And the on-resistance and on/off current ratio is 3.43mΩ‧cm^2 and 10^8 for the same device. For the reverse breakdown characteristics, we use a thick buffer layer to reduce substrate leakage current and raise the capability of vertical breakdown voltage. The highest breakdown voltage for the device with Lgd=60μm is 2760V, and the best BFOM is 604 MW/cm^2 for the device with Lgd=20μm. A drain current instability that is different from the current collapse due to surface and bulk traps is observed and explained.

並列關鍵字

GaN AlGaN/GaN p-GaN enhancement-mode

參考文獻


[1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
[2]M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions, ” Appl. Phys. Lett., vol.60, no. 24, pp. 3027-3029, Mar. 1992.
[3]M. Asif Khan, M.S. Shur and Q. Chen, “High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor, ” IEE Electronics Lett., vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
[4]Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” App.. Physics Lett., vol. 69, no. 10, pp. 1438-1440, Sep. 1996.
[5]S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, no. 3, pp. 589-592, Mar. 2003.

延伸閱讀