透過您的圖書館登入
IP:3.137.192.3
  • 學位論文

具高運動穩定性與大驅動力之電磁式微掃描面鏡設計與實現

Design and Implementation of Electromagnetic Micro Scanning Mirrors with High Motion Stability and Large Driving Force

指導教授 : 方維倫

摘要


本論文首先針對微掃描面鏡之應用需求進行介紹,由微掃描面鏡之系統端切入瞭解其特色,並以光學考量為設計基礎,延伸到微掃描面鏡之結構設計,進而提出雙面電鍍、內嵌磁性材料、複合電磁致動力之微掃描面鏡設計。針對雙面電鍍之微掃描面鏡設計,具有兩大特色:(1)定義磁性材料為細長圖形以增加本身的磁化強度,(2)在元件層背面以選擇性電鍍的方式增加磁性材料的體積。針對內嵌磁性材料之微掃描面鏡設計,主要具有三個特色:(1)製作矽鎳致動外環以提供大致動力與優越的機械材料特性,(2)內嵌鎳結構可增加磁性材料體積與磁化強度以提升靜磁致動力矩,(3)出平面軸對稱之矽鎳複合結構可減少鏡面操作時不必要的擺盪問題,以增加元件運動穩定性。針對複合電磁致動力之微掃描面鏡設計,具有兩大特色:(1)整合勞侖茲力與靜磁力以實現複合電磁致動力驅動微掃描面鏡,(2)採用三維磁鐵陣列以得到高強度之集中磁場。為了實現本論文所提出之微掃描面鏡設計,因此開發雙面電鍍製程技術與內嵌磁性材料製程技術,雙面電鍍製程技術具有兩個特色:(1) SOI晶片的基板層可當作遮蔽擋罩來定義元件層背面的電鍍起始層圖形,(2) SOI晶片的元件層可當作電鍍時的陰極板,以實現雙面選擇性電鍍的概念。而內嵌磁性材料製程技術則是利用單晶矽模子同時電鍍並定義厚結構鎳,以成功製作矽鎳複合致動外環。量測結果中除了成功驗證此本論文所提出之元件設計外,還可以分別以Lissajous掃描與循序掃描方式投影出二維影像,並配合上雷射訊號編碼進行系統驗證,成功證明本論文之元件特性足以提供雷射投影顯示系統之應用需求。

並列摘要


This thesis introduces the applied requirements of the micro scanning mirror firstly. The mechanical designs of the micro scanning mirror based on optical considerations are proposed, including double-side electroplating design, embedded magnetic material design and compound electromagnetic actuating force design. The double-side electroplating design has two merits: (1) the ferromagnetic material is patterned to slender shape to increase the magnetization strength, (2) the backside selective electroplating of the ferromagnetic film increases the volume of the ferromagnetic materials. The embedded magnetic material design has three merits, (1) the Si-Ni compound actuating frame provides superior mechanical properties and large magnetostatic force, (2) the embedded Ni structures not only increase the ferromagnetic material volume but also enhance magnetization strength to enlarge magnetostatic torque, (3) the axial symmetric Si-Ni compound structures can increase the motion stability. The compound electromagnetic actuating force design has two merits: (1) integrate Lorentz force and magnetostatic force to realize the compound actuation, (2) employ the 3D magnet array to get the large concentrated magnetic field. In order to implement the proposed design, the fabrication techniques of double-side electroplating technique and embedded magnetic material are developed. The double-side electroplating technique has two merits: (1) the handle-layer is exploited as the shadow mask to pattern the seed-layer at the backside of the device layer, (2) the device layer acts as the cathode to enable simultaneous double-side electroplating. The embedded magnetic material technique employs a Si mold to simultaneously electroplate and pattern thick Ni to fabricate Si-Ni compound structures. The measurement results successfully demonstrate the proposed designs. In applications, the micro scanning mirrors are used to project 2D Lissajous patterns and raster scan patterns. Moreover, the micro scanning mirrors are operated with pulse laser to verify the system integration. The test results show the device characteristics are sufficient to satisfy the basic requirements of laser scanning display systems.

參考文獻


[2] http://www.analog.com/index.html, Analog Devices
[3] http://www.dlp.com, Texas Instruments
[4] http://www.knowles.com/search/, Knowles
[6] P. B. Chu, S.-S. Lee, and S. Park, “MEMS: the path to large optical crossconnects,” Communications Magazine, vol. 40, pp. 80-87, 2002.
[8] C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photonics Technology Letters, vol. 11, pp. 233-235, 1999.

延伸閱讀