透過您的圖書館登入
IP:18.223.239.171
  • 學位論文

未受訓練之黑腹果蠅的短期空間記憶

Short-term spatial memory in un-trained Drosophila Melanogaster

指導教授 : 羅中泉

摘要


記憶分成長期記憶 (long-term memory) 以及短期記憶 (short-term memory)。其中我們對於短期記憶如何在人類腦中運作深感興趣。但因人類腦神經的數量級過大 (860億條)以及電腦運算效能等問題造成我們在人類腦神經科學研究上有許多阻礙。(羅中泉, 2014)。而果蠅腦中腦神經數量級遠小於人類 (約幾十萬條) 對於現階段的電腦運算效能剛好符合加上有發展成熟的基因工具 (genetics tools)可以控制每一隻果蠅欲表現的性狀,是一個相當成熟的研究模型。因此我們以研究果蠅短期記憶對行走行為的影響為出發點,希望未來能了解短期記憶在果蠅腦中的形成方式。 為研究果蠅的短期記憶,我們建造了一款 LED環形螢幕並且以發展已久的果蠅視覺行為實驗Buridan’s paradigm為基礎,設計了一項研究果蠅空間短期記憶的實驗步驟。同時藉由我們所創新的數據分析方法分析數據來探討短期記憶能否對果蠅的行走行為造成影響。 我們的實驗結果發現,果蠅在目標物消失後的行走行為可以被歸類成三種形態,而其中一種形態的形成可以是由短期記憶所造成,同時在實驗數據分析中我們也發現果蠅可能有持有短期記憶超過一分鐘的能力。

關鍵字

果蠅 短期記憶 LED 螢幕 行為實驗

並列摘要


Memory can be classified into long-term memory (LM) and short-term memory (SM). We are particularly interested in the mechanism of the SM between two of them. Owing to the quantity of neurons in human’s brain and the efficiency of computer, we chose Drosophila melanogaster (fruit fly) as studying model. We started with the research of how the fly’s SM affects its walking behavior and hoped that we can apply the result to the human’s brain in the future. In order to research fly’s behavior and to demonstrate detailed features in SM, we built our own LED arena based on recent designs. In Drosophila’s research, SM was demonstrated by Buidan’s paradigm. We created a protocol, which is based on Buidan’s paradigm to study the walking behavior of fruit fly. We also created a new method to analyze fly’s behavior and the effect of fly’s SM. Our result indicates that a fly’s walking behavior can be categorized into three basic types after the target was off set. Further result shows that one of the fly’s behaviors can be affected by its SM. During the analysis, we also observed the possible that the fly maybe have the ability of retaining SM for more than 60 seconds.

並列關鍵字

Buridan's paradigm

參考文獻


Borst, A. (2009). Drosophila’s View on Insect Vision. Current Biology, 19(1), R36–R47. http://doi.org/10.1016/j.cub.2008.11.001
Colomb, J., Reiter, L., Blaszkiewicz, J., Wessnitzer, J., & Brembs, B. (2012). Open Source Tracking and Analysis of Adult Drosophila Locomotion in Buridan’s Paradigm with and without Visual Targets. PLoS ONE, 7(8), e42247. http://doi.org/10.1371/journal.pone.0042247
Goetz, K. G. (1989). Search and Choice in Drosophila. In R. N. Singh & N. J. Strausfeld (Eds.), Neurobiology of Sensory Systems (pp. 139–153). Springer US. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4899-2519-0_11
Götz, K. G. (1980). Visual guidance in Drosophila. Basic Life Sciences, 16, 391–407.
Kunimatsu, J., & Tanaka, M. (2010). Roles of the Primate Motor Thalamus in the Generation of Antisaccades. J. Neurosci., 30(14), 5108–5117. http://doi.org/10.1523/JNEUROSCI.0406-10.2010

延伸閱讀