透過您的圖書館登入
IP:3.139.107.241
  • 學位論文

石墨烯與氮摻雜石墨烯的合成與應用研究

Synthesis and Applications of Graphene and Nitrogen-doped Graphene

指導教授 : 胡啟章

摘要


本研究透過PECVD電漿方法製備了兩種型態的氮摻雜石墨烯,透 過控制製程參數,調整電漿強度可控制石墨烯的缺陷量,在藉由不 同缺陷的石墨烯進行氮元素的摻雜,發現氮原子與碳原子的鍵結態 可以被缺陷位置影響進而加以控制。本研究透過不同位置的氮摻雜 石墨烯粉末應用到氧氣還原反應的催化以及生化檢測上,發現有著異 的表現,其中HPN-MQGs可以在氧氣還原反應上達到3.94的電子 轉移。而高品質石墨烯作為uric acid(UA), ascorbic acid(AA) and dopamine (DA)的檢測上則可以將偵測極限降低至2.5μM。之後為了 避免石墨烯粉末再堆疊,製作了無黏著劑(binder-free)的奈米石墨烯壁 (Graphene-Nano-Wall, GNW)以及氮摻雜奈米石墨烯壁 (Nitrogen- doped Graphene Nano-Wall, NGNW)將之應用在製作有機系超級電容 的電極,透過GNW與NGNW可以分別提升正極的上限電位到 1.5V以及將負極從-2.0V增加到-2.5V,在組成一非對稱電雙層電容 器可以在商用電解液1M 四乙基四氟硼酸/碳酸丙烯酯Tetraethyl ammonium tetrafluoroborate (TEABF4)/propylene carbonate (PC)中達到 4V的高電位窗,並且能量密度為53 Wh/kg以及功率密8000W/kg, 經過10000次充放電測試後可以維持100%的電容維持率。

並列摘要


This research prepared two types of graphene sheet through microwave plasma torch chemical vapor deposition method (MPT-CVD). We fine- tuned the parameters of process and controlled strength of plasma to manipulate the defects of graphene and found a correlation between nitrogen configuration and defect density. The nitrogen plasma has been demonstrated to effectively dope N atoms onto graphene sheets. The distribution of the N-doping types can be tuned by control of the graphene defect density and the nitrogen plasma power to generate multiple functionalities of the resultant materials. The medium-quality graphene doped at a high-power nitrogen plasma exhibits the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) with a mean electron-transfer number of 3.94 which is comparable to that of platinum. The high-quality graphene doped at a low-power nitrogen plasma shows the high activity and selectivity for simultaneously detecting uric acid (UA), ascorbic acid (AA), and dopamine (DA) and detecting limit is 2.5 μM due to the high content of the pyridinic-N structure. We also produced the binder-free, vertically grown graphene-nano-walls (GNW) and nitrogen-doped graphene-nano-walls (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 V to 1.5 V (vs. Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M Tetraethyl ammonium tetrafluoroborate (TEABF4)/propylene carbonate (PC) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 53 Wh kg-1 and specific power of 8 kW kg-1 and ca. 100% capacitance retention after 10,000 cycles charge-discharge.

並列關鍵字

Graphene Nitrogen-doped ORR Bio-sensor Supercapacitors

參考文獻


[1]Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 2008.
[2]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, Jun 2008.
[3]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, Mar 2008.
[4]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, Oct 2008.
[5]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.

延伸閱讀