透過您的圖書館登入
IP:3.144.253.161
  • 學位論文

官能化聚苯醚高分子之反應方法、性質與應用研究

Functionalization of poly(phenylene oxide): reaction methods, properties, and application

指導教授 : 劉英麟

摘要


本論文探討改質聚苯醚(PPO)之反應方法與性質,以製備官能化工程塑料並應用於物質分離與電氣等領域。首先利用原子轉移自由基反應及沃爾–齊格勒反應使PPO溴化,提出新的溴化反應方法radical and atom transfer halogenation (RATH)及其反應機制,相較於傳統溴化方法,RATH反應可在較低溫中進行,並可應用於多種溶劑之中。以溴化PPO為起始反應物,進行原子轉移自由基加成反應及雙原子親核取代反應,分別將TEMPO及米氏酸化合物(MA-M)導入PPO中,合成官能化的PPO-TEMPO及PPO-MAM,利用紅外光光譜儀(FTIR)、核磁共振光譜儀(NMR)、微差掃描卡計(DSC)和熱重分析儀(TGA)確認高分子之結構與熱性質。PPO-TEMPO可進行氮氧自由基控制聚合反應,且可利用TEMPO基團進行自由基交聯反應;而PPO-MAM之米氏酸基團進行熱裂解反應後可生成高反應性的烯酮官能基(ketene),可接續進行[2+2]自身加成反應。因此,PPO-TEMPO和PPO-MAM都是具有可自身交聯特性的熱塑性高分子。將PPO-TEMPO和PPO-MAM製成膜材後並進行熱交聯反應,藉由熱重分析儀(TGA)、動態熱機械分析儀(DMA)及拉伸實驗確認膜材之性質。交聯後之PPO膜材保有良好的熱性質且具有更好的耐溶劑性、成膜性及機械強度。

並列摘要


This study explores multiple ways to functionalize poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and investigates the properties of the functionalized PPO. First, brominated PPO is prepared by atom transfer radical reaction and Wohl-Ziegler reaction. A new bromination method, radical and atom transfer halogenation (RATH), and its reaction mechanism has been demonsatrted. Compared to the conventional bromination methods, RATH can be performed at lower temperatures with less solvent restriction. Then, crosslinkable thermalplastic polymers, PPO-TEMPO and PPO-MAM, have been synthesized through bromination of PPO followed by atom transfer radical addition and nucleophilic substitution reaction, respectively. Structural and thermal analysis are carried out with FTIR, NMR, DSC and TGA. PPO-TEMPO could serve as a macroinitiator for nitroxide-mediated polymerization. Moreover, PPO-TEMPO and PPO-MAM are casted into films and thermally crosslinked to form crosslinked membranes with high gel fractions. The cured membranes exhibit excellent thermal properties, mechanical properties and solvent resistance as well as film formability.

參考文獻


1. Hay, A. S.; Blanchard, H. S.; Endres, G. F.; Eustance, J. W., POLYMERIZATION BY OXIDATIVE COUPLING. Journal of the American Chemical Society 1959, 81 (23), 6335-6336.
2. Hwang, H.-J.; Hsu, S.-W.; Wang, C.-S., Low dielectric and flame-retardant properties of thermosetting redistributed poly(phenylene oxide). Journal of Vinyl and Additive Technology 2009, 15 (1), 54-59.
3. Ilinitch, O. M.; Fenelonov, V. B.; Lapkin, A. A.; Okkel, L. G.; Terskikh, V. V.; Zamaraev, K. I., Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous and Mesoporous Materials 1999, 31 (1–2), 97-110.
4. Seike, Y.; Okude, Y.; Iwakura, I.; Chiba, I.; Ikeno, T.; Yamada, T., Synthesis of Polyphenylene Ether Derivatives: Estimation of Their Dielectric Constants. Macromolecular Chemistry and Physics 2003, 204 (15), 1876-1881.
5. Dang, H.-S.; Weiber, E. A.; Jannasch, P., Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. Journal of Materials Chemistry A 2015, 3 (10), 5280-5284.

延伸閱讀