透過您的圖書館登入
IP:3.135.183.89
  • 學位論文

玻璃基板上高附著濕製程金屬化之研究

A Study on Wet-Processed Metallization on Glass Substrate with High Adhesion

指導教授 : 衛子健

摘要


本研究目的為改善濕式製程金屬化製程來增加玻璃上金屬鍍層的附著力。濕製程金屬化部份為無電鍍鎳磷層加上其後之電鍍銅增厚層之複合金屬鍍層,為增加此金屬鍍層的附著力,使用二氧化鈦(TiO2)薄層作為玻璃與金屬間的強化附著層。除此之外,在無電鍍鎳磷之觸媒部分則是以自行研發之矽烷化合物改良之自吸附奈米鈀觸媒,以增加與金屬鍍層的附著力。 本論文中共有三個研究主題,第一部份探討自行研發之自吸附鈀觸媒,從實驗室沿襲使用含有三個胺基的矽烷化合物(3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane, ETAS)提供電子對吸附聚乙烯醇(polyvinyl alcohol, PVA)包覆的奈米鈀(PVA-Pd)的兩步驟活化技術,加以改良透過將ETAS與PVA-Pd溶液以適當比例混合,合成出具自吸附功能之ETAS-PVA-Pd觸媒,此ETAS-PVA-Pd能直接與玻璃表面形成Si-O-Si共價鍵,達到一步驟改質且活化的雙重功效。以穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)、水滴接觸角(W.C.A)進行粒徑及吸附於玻璃基板的性質探討,以X射線光電子能譜儀(XPS)解釋ETAS-PVA-Pd觸媒於玻璃基板上吸附機制;利用ETAS-PVA-Pd觸媒進行無電鍍鎳沉積其鎳層平均附著力為9.4 MPa,與使用先以ETAS表面改質再吸附PVA-Pd的兩步驟製程的附著力相近,且不論是一步驟製程或兩步驟製程在無電鍍鎳層的附著力皆高於使用商用錫鈀膠體及離子鈀觸媒系統催化的無電鍍鎳層附著力,但仍與實用目標相距甚遠。 第二部分是以第一部分的成果為基礎,在玻璃基板上先施作一層TiO2作為強化附著層,並探討退火製程存在與否對裂面的影響。以掃描式電子顯微鏡(SEM)及AFM說明退火後裂面從玻璃及TiO2界面轉移至TiO2與鎳銅層間的界面,並探討TiO2粗糙度變化及TiO2薄膜結構對金屬鍍層附著力影響,說明將TiO2前驅物(TTDB)加入TiO2漿料分散液中能製作出緻密且具粗糙度的金屬氧化物薄膜,大幅提升金屬鍍層平均附著力至305 gf/cm。為了解釋附著力大增的原因,我們以TEM證實TiO2結構及玻璃界面的晶格條紋說明界面緊密結合,並利用歐傑電子能譜儀(AES)對裂面結構進行化學元素分析,顯示高附著力鍍層的裂面位於TiO2上層結構與無電鍍鎳層間。 最後一部分為將上述之研究成果實際應用於含通孔之玻璃中介層上濕式金屬化製程的先導性測試,並提出未來改良方針以符合商業生產的目標。

並列摘要


The purpose of the study is to increase the adhesion of the metal films on glass substrates by a wet metallization process. The process of the wet metallization uses the electroless Ni deposition (ELD) on glass substrates followed by electroplating (EP) Cu. To improve the adhesion of the metal films, titanium oxide is used as an adhesion promoter. Besides, in the part of electroless Ni deposition (ELD), the Pd nanoparticles are also modified with silane compound to improve the interaction between glass and Ni seed layer. There are three research parts in the study. The discussions of the first part of the study are about the analysis of the self-attaching Pd catalyst. In the lab, the amino silane compound surface treatment is used for long time. 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) compound donates electrons to interact Pd catalyst capped with polyvinyl alcohol (PVA-Pd). In this study, we further integrate the silane compound to the Pd nanoparticles by adding ETAS to PVA-Pd aqueous solution. The ETAS contained PVA-Pd (ETAS-PVA-Pd) is capable to attach on glass surface by forming the Si-O covalent bond. The particles size of ETAS-PVA-Pd and the adsorption of the Pd catalyst on the glass are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), water contact angle (W.C.A). The configuration of ETAS-PVA-Pd nanostructure as well as the effect of modification is explained by X-ray photoelectron spectroscopy (XPS). The average adhesion of ELD Ni-P film prepared by ETAS-PVA-Pd is 9.4 MPa, which is identical to the one using to separate ETAS treatment and then PVA-Pd adsorption. The adhesion of both processes has significantly outperformed the Ni-P film adhesion using commercial Sn/Pd or Ion-Pd system. However, the adhesion is still not high enough to the goal. The second part based on the first part focuses on using the TiO2 film as adhesion promoter. For the annealing effect, the graphs of scanning electron microscope(SEM) and AFM indicate the fracture changes from the interface of glass and TiO2 to the interface of TiO2 and Ni-Cu layer. On the other hand, the surface roughness and the structure of TiO2 factors corresponding to the adhesion are discussed. The adhesion of metal films increases to 305 gf/cm by adding the precursor titanium diisopropoxide bis (acetylacetonate) (TTDB) to the TiO2 suspension. The fracture of high adhesion of metal film is between the upper TiO2 structure and ELD Ni layer, which is proved by TEM and auger electron spectroscopy (AES) chemical analysis. In the last part of this study, we combine the above results and apply them on TGV interposer with wet metallization procedure for prospective study, and we propose some advice to achieve the goal of mass production.

參考文獻


[1] V. Sukumaran, Q. Chen, F. Liu, N. Kumbhat, T. Bandyopadhyay, H. Chan, et al., "Through-package-via formation and metallization of glass interposers," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 557-563.
[2] B. K. Wang, Y.-A. Chen, A. Shorey, and G. Piech, "Thin glass substrates development and integration for through glass vias (TGV) with copper (Cu) interconnects," in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012, pp. 247-250.
[3] A. B. Shorey and R. Lu, "Progress and application of through glass via (TGV) technology," in Pan Pacific Microelectronics Symposium (Pan Pacific), 2016, pp. 1-6.
[4] A. Pizzagall. (2013). "Glass wafer market will reach more than 15M 8” EQ WSPY by 2018,” estimates Yole Développement. Available: http://www.yole.fr/iso_upload/News/2013/PR_Glass%20Substrates_YOLE%20DEVELOPPEMENT_April2013.pdf
[5] 濺鍍技術原理. Available:

延伸閱讀