透過您的圖書館登入
IP:3.14.70.203
  • 學位論文

回收矽粉再製矽酸鋰奈米材料

Preparation of LixSiOy Nanomaterials from Recycled Silicon.

指導教授 : 江慧真

摘要


世界上二氧化碳排放量越來越多,為了應對全球氣候系統暖化,國際社會提出了低碳經濟的新概念。矽酸鋰材料能在高溫下直接吸收二氧化碳並具有較高的吸收容量,而且在不同條件下具有吸收、放出二氧化碳之可逆性,為減少從高溫爐中排放二氧化碳之新途徑。除了可當高溫吸碳材料外,氚增殖劑材料、螢光材料等也是近來矽酸鋰材料備受矚目的應用。 臺灣有許多的半導體工廠,生產晶圓時會產生許多的矽粉及報廢的晶圓,在此研究中我們將使用工廠所產生的矽淤泥及報廢的碎晶圓等回收矽做為合成矽酸鋰的矽源,與LiOH‧H2O進行水熱合成法及沉澱法加高溫燒結,希望能合成一系列Li2SiO3、Li4SiO4、Li8SiO6矽酸鋰奈米材料。此外,於自製之偏矽酸鋰(Li2SiO3)參雜入Eu3+進行螢光材料合成之應用。 本研究合成之樣品將使用場效發射式掃描電子顯微鏡、X光粉末繞射儀分別觀察合成材料之表面形貌及進行物質成分分析鑑定,確定使用水熱法即可製備出Li2SiO3偏矽酸鋰奈米材料,晶粒大小於15nm~30nm之間。而經過高溫煅燒製備出Li2SiO3結晶性較佳,但晶粒大小則會增加至35-55nm。Li4SiO4矽酸鋰則須經過高溫煅燒才可合成,此研究中最佳合成條件為800℃ 3小時、900℃ 2小時將可獲得幾乎為純相的Li4SiO4。晶粒大小約40-110nm,其中以碎晶圓合成之晶粒大小略小於使用回收矽粉合成的Li4SiO4。 最後PL檢測參雜Eu3+的偏矽酸鋰於230nm激發下,在波長綠光590nm、橘光612nm和紅光705nm處可見發射峰。

並列摘要


During the past few decades, people use the fossil fuels to produce energy. The consequence of the use of fuels is the excessive emission carbon dioxide to the Earth's atmosphere, that creating the greenhouse effect. The lithium silicates use as high-temperature sorbents for carbon dioxide capture in an attempt to alleviate the consequences of global warming. For the preparation of lithium silicates nanomaterials from recycled silicon powder or broken silicon wafers and LiOH‧H2O by hydrothermal method only and precipitation method with calcine. Reactions were performed with different Li:Si molar ratios of 2, 4 and 8. The synthesized products were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained products were Li2SiO3, Li4SiO4. Li2SiO3 prepared by hydrothermal method and precipitation method with calcine. We could calculate dimension from XRD FWHM, and Dhkl= 15~55nm. Pure Li4SiO4 only prepared by precipitation method and calcined at 800℃ for 3 hours or 900℃ for 2 hours. Li4SiO4 nano thin film would be observed by precipitation method and calcined at 900℃ for 2 hours. Finally, the Li2SiO3 have been doped with Eu3+. PL emission spectrum of Eu3+ doped Li2SiO3 taken with excitation at the 230 nm, a number of sharp lines were observed at 590(green light)、612nm(orange light) and 705nm(red light).

參考文獻


參考資料
[1]. Richard P. Feynman,”There's Plenty of Room at the Bottom.” , Engineering and Science, February 1960, Volume 23:5, Pages 22-36
[2]. J. Charpin, F. Botter, M. Briec, B. Rasneur, E. Roth, N. Roux,”Investigation of γ lithium aluminate as tritium breeding material for a fusion reactor blanket “, Fusion Engineering and Design Volume 8, 1989, Pages 407-413
[3]. C. E. Johnson, K. R Kummerer, E. Rote,” Ceramic breeder materials” , Journal of Nuclear Materials , 2 July 1988, Volumes 155–157, Part 1, Pages 188-201
[4]. Yung Y. Liu, Michael C. Billone, A. K. Fischer, S. W. Tam, Robert G. Clemmer & Glenn W. Hollenberg ,” Solid tritium breeder materials-Li2O and LiAlO2:a data base review”, Fusion Technology, 1985, Volume 8, Pages 1970-1984

延伸閱讀