透過您的圖書館登入
IP:3.143.9.115
  • 學位論文

層狀質子化鈦酸鹽的製備與應用

The fabrications and applications of Layered Protonated Titanate

指導教授 : 汪上曉 呂世源

摘要


本論文探討了層狀質子化鈦酸鹽奈米片的製備及,在汙染物的吸附與鋰離子電池的應用。 在汙染物的吸附應用部分,我們開發了一簡易的一步驟(one-step)、低溫(<100oC)、藉由尿素調節的合成方法用以製備層狀質子化鈦酸鹽 H2Ti2O5.H2O。尿素在此間接當作銨離子的來源,經由調控不同的尿素濃度與反應熟成時間,可以製備出結構完整的層狀質子化鈦酸鹽H2Ti2O5.H2O奈米片。經由吸附實驗的測試,此一材料在有機汙染物亞甲基藍與無機汙染物鉛離子的吸附上展現極佳的吸附容量。此極佳的吸附容量可以歸因於層狀結構奈米片具有高的比表面積與良好的離子交換能力。其中鉛離子嵌入於LPTNs H2Ti2O5.H2O的內層空間可以藉由檢測吸附後的X-射線繞射峰值的下降獲得驗證。由實驗結果顯示層狀質子化鈦酸鹽奈米片材料可做為廢水處理中用於吸附去除金屬離子或陽離子有機染料之有前途的吸附劑。 我們也將TiO2B奈米片嫁接在層狀質子化鈦酸鹽H2Ti8O17 奈米線上,並將此帶鰭奈米線的核-殼結構當作鋰離子電池的負極。發現其半電池放電電容量比未經修飾的H2Ti8O17 core奈米線增加了20 %,並於長循環放電下無明顯的衰退情況發生。 上述結果證明了鈦酸鹽層作為環境和能源應用的納米結構材料的多功能性。

並列摘要


In this thesis, fabrications of nanostructures containing layered protonated titanate nanosheets (LPTNs) and their applications were investigated. A simple one-step, low-temperature, urea-modulated method is developed for the synthesis of layered protonated titanate nanosheets (LPTNs). Urea serves as an indirect ammonium ion source, and the controlled supply of the ammonium ion slows the crystalline formation process and enables the production of the LPTNs from amorphous intermediate through aging-induced restructuring. The resulting LPTNs exhibit excellent adsorption capacities for methylene blue and Pb2+ because of their high specific surface areas and excellent ion-exchange capability. Intercalation of Pb2+ into the interlayer space of the LPTNs are evidenced by the relevant X-ray diffraction patterns on perturbation of the layered structure. The LPTNs prove to be a promising adsorbent in wastewater treatment for adsorption removal of metal ions or cationic organic dyes. We have also decorated TiO2B fins onto layer titnanate H2Ti8O17 nanowires and assemble them into a Li-ion battery half-cell. The results show TiO2B fin-H2Ti8O17 wire core-shell structure exhibits 20% higher capacity as the material for Li-ion battery half-cell compared to pristine H2Ti8O17 wires. Excellent long cycling life in half-cell discharge test was also obtained. The aforementioned results demonstrated the versatility of layer titanate as a nanostructured material for environmental and energy applications.

參考文獻


1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423, (6941), 705-714.
2. Krebs, B., The crystal structure of MoO 3, 2H 2 O: a metal aquoxide with both co-ordinated and hydrate water. Journal of the Chemical Society D: Chemical Communications 1970, (1), 50-51.
3. Bachmann, H.-G.; Ahmed, F. R.; Barnes, W. H., The crystal structure of vanadium pentoxide. Zeitschrift für Kristallographie-Crystalline Materials 1961, 115, (1-6), 110-131.
4. Delmas, C.; Fouassier, C.; Hagenmuller, P., Structural Classification and Properties of the Layered Oxides. Physica B & C 1980, 99, (1-4), 81-85.
5. Gasperin, M., Structure du triniobate (V) de potassium KNb3O8, un niobate lamellaire. Acta Crystallographica Section B 1982, 38, (7), 2024-2026.

延伸閱讀