透過您的圖書館登入
IP:18.223.160.61
  • 學位論文

矽(111)基板上製備純粹的鉍-α(√3×√3)表面

Preparation of Pure Bi/Si(111)–α (√3×√3) Phase

指導教授 : 林登松

摘要


鉍原子於矽(111)基板上有 兩種(√3×√3) R30˚超結構: α及β相,此兩種超結構差別為單位晶包內鉍原子的數目。β結構為鉍三聚體(trimer)所組成,其製備方式及相關電子特性如Rashba效應皆已被廣泛的研究;α結構則是由鉍原子吸附於矽(111)之T4位置形成之鉍原子單體,然而相關文獻中一直無法給出明確的製程說明,也造成α結構尚未被深入的討論研究。在本論文中,以掃描穿隧電子顯微鏡(STM)觀察兩種結構之成長模式,並繪製鉍原子鍍量與加熱溫度之相圖,嘗試找出製備 α- (√3×√3)R30˚單原子層之標準作業程序。實驗結果顯示:直接蒸鍍1/3ML鉍原子於矽基板後加熱,並無法形成大面積的α結構,必須透過熱脫附的方式,對鉍原子個數較多的 β結構進行熱退火,且溫度須達到500˚C並維持三分鐘,使β相中的鉍原子脫附而成長出了1ML的α相結構,接著以此兩種超結構表面為基礎,使用STM去量測兩者間的結構差異及比較其電子能態。

關鍵字

矽(111)

並列摘要


Bismth on Si(111) substrate has two super structure: α and β phase. Both of them show a (√3×√3) R30˚ reconstruction .The most difference between these two super structure is the number of bismuth atoms in an unit cell. β phase is trimer of bismuth atoms, which has been well studied, including the preparing method and the electronic properties, e.g. rashba effect. Compare with α phase, single bismuth atom standing on T4 site. Barely could find the specific fabrication method or phase diagram from literature. Therefore, α phase haven’t been discussed or researched in experiment widly. In this thesis, we use the scanning tunneling microscopy to observe the growth mode of α and β phase. Using the experiment data to make a phase diagram and tring to find out the standard operation procedure for α phase. The experiment results reveal that we couldn’t obtain α(√3×√3) R30˚ atomic layer by depositing 1/3ML Bismuth on substrate then post annealing directly. The technique of thermal desorbtion is nessceary under the process. To get a well-fromed α phase surface. First, prepare 1ML β phase and post anneal to 500˚ C for at least three minutes. While the bismuth atoms desorbing, α phase appearing at the same time. By contral the desorbed time, we could prepare 1ML α phase. And then, base on these two super lattice, α and β phase. Utilizing the STM to measure their density of state and observe the structural differeces.

並列關鍵字

Si(111) Bi α

參考文獻


1.Wan, K. J., Guo, T., Ford, W. K. & Hermanson, J. C. Initial growth of Bi films on a Si(111) substrate: Two phases of √3 × √3 low-energy-electron-diffraction pattern and their geometric structures. Physical Review B 44, 3471-3474, doi:10.1103/PhysRevB.44.3471 (1991).
2.H. Cercellier, C. D., Y. Fagot-Revurat, B. Kierren, L. Moreau, and D. Malterre. Structure of the Bi/Si(111) Surface by Field-Ion Scanning Tunneling Microscopy. Japanese Journal of Applied Physics (2006).
3.Gierz, I. et al. Silicon surface with giant spin splitting. Phys Rev Lett 103, 046803, doi:10.1103/PhysRevLett.103.046803 (2009).
4.Frantzeskakis, E., Pons, S. & Grioni, M. Giant spin–orbit splitting in a surface alloy grown on a Si substrate. Physica B: Condensed Matter 404, 419-421, doi:10.1016/j.physb.2008.11.081 (2009).
5.Christian R. Ast, D. P., Mihaela Falub, Luca Moreschini, Marco Papagno, Gero Wittich, Peter Wahl, Ralf Vogelgesang, Marco Grioni, Klaus Kern. Giant Spin-splitting in the Bi/Ag(111) Surface Alloy. Materials Science (2005).

延伸閱讀