透過您的圖書館登入
IP:18.218.168.16
  • 學位論文

進步型沸水式反應器運轉暫態及熱水力特性研究

Studies of Operational Transients and Thermal-Hydraulic Characteristics for Lungmen ABWR Plant

指導教授 : 白寶實 苑穎瑞 馮玉明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


進步型沸水式反應器 (Advanced Boiling Water Reactor, ABWR)之反應爐冷卻水再循環係採爐內泵打水方式,設計上在反應爐降水區對稱裝置有十台爐內泵,電廠正常運轉至少需九台爐內泵運作才可維持滿載。由於ABWR 之此種爐內泵再循環設計與傳統BWR 爐外泵加上爐內噴射泵之再循環設計比較,基本型態不同,傳統BWR 之經驗未必能適用。而反應器廠家在此方面所提供之資訊,在運轉上可能遭遇之暫態,基本上以龍門電廠終期安全分析報告(FSAR)[1]說明分析結果為主。 本研究以RETRAN-02系統暫態分析程式與熱通道分析程式,利用ABWR 暫態分析之方式進行深入探討,完成反應器四種典型運轉暫態事件,包括(1) 爐內泵跳脫暫態(2) 喪失飼水加熱器暫態 (3) 棄載無旁通暫態 (4) 一只汽機控制閥失效快速關閉暫態之分析,並同時進行相關之靈敏度分析。最後連結GEXL-14臨界乾度關係式,以熱餘裕方法預測CPR之暫態反應,將在運轉暫態情況下之爐心最熱燃料束之ΔCPR值分析計算出來,與FSAR對應個案之分析結果比較,發現本研究之分析結果十分合理。 (1) 爐內泵跳脫暫態,研究發現RFCS處於自動模式之△CPR較處於手動模式狀態下嚴重,其關鍵原因為RIP速度是否調整,造成爐心流量及中子通量改變。(2) 喪失飼水加熱器暫態,對於RFCS自動模式案例,中子通量上升同時將會藉由調整RIP速度來改變爐心流量,以限制暫態嚴重程度。對RFCS手動模式案例,RIP轉速固定,限制中子通量上升方式僅來自於都卜勒效應及空泡效應回饋,中子通量在新的平衡狀態到達前不斷上升,故△CPR值將較RFCS自動模式案例為大。(3) 棄載無旁通暫態,對於10台RIP與9台RIP運轉之LRNB暫態進行靈敏度分析結果顯示,所有參數響應幾乎相同,僅爐心進口流量及未跳脫之RIP流量有所差異。總爐心流量加總結果, 9台RIP運轉案例之爐心流量仍少於10台RIP運轉之案例。(4) 一只汽機控制閥失效快速關閉暫態,主汽機控制閥Partial ARC與安全分析所使用之Full ARC兩種模式進行分析比較結果,暫態初期Partial ARC案例下之蒸汽流量小於Full ARC案例下之蒸汽流量,此亦造成前者反應爐頂部壓力上升更劇烈, Partial ARC案例較Full ARC案例提前1.51秒達到反應爐高壓力急停設定值。此兩種模式進行分析比較,提供FSAR之外的分析觀點。 本研究對RETRAN-02之RFCS控制系統、RIP單台控制之模擬、汽機控制閥控制模式轉換、四條主蒸汽管之模擬等,均已回饋至龍門電廠雷傳分析模式之精進,對於程式模擬更趨近於實際,更加強了安全分析之可信賴度。其實際貢獻如下: (一)RETRAN-02程式模擬方式趨近於實際龍門電廠實際狀況,對強化本土核能安全分析技術應能有所助益。 (二)當未來龍門電廠發生與FSAR不盡相同之運轉暫態,當其中主要影響參數為RIP運轉台數改變、反應爐功率、爐心流量、反應爐壓力、爐心進口焓等項目時,若管制單位或台電公司有疑慮時,藉由此RETRAN-02分析程式,可於短時間內計算出相關分析結果,由整個暫態過程之模擬可確認其影響程度之大小,增強管制單位或台電公司對事件之瞭解,解除相關之疑慮。 (三) 未來龍門電廠需進行設備強化而變更設計時,其主要影響參數屬於本研究完成發展與驗證之相關參數,應可經RETRAN-02分析程式計算結果可提供相關安全分析變化量之預估值,確認電廠運轉仍有適度之安全餘裕。 (四) RETRAN-02分析結果與FSAR之分析結果主要影響參數為汽機控制閥控制模式改變、RIP運轉台數改變、反應爐功率、爐心流量、反應爐壓力、爐心進口焓等項目時,可相互比對驗證,並可加入保守性假設予以計算,驗證FSAR分析時假設條件之正確性,確保電廠運轉安全餘裕。

並列摘要


The Lungmen nuclear power plant, owned by Taiwan Power Company and scheduled to be in commercial operation on 2011, is a GE-designed ABWR. The annular region in the lower downcomer of reactor pressure vessel accommodates ten reactor internal pumps (RIPs), which can provide core flow rate up to 111% rated. For safety concern, further more studies on thermal hydraulic characteristics of RIPs are needed. However, there is little information available on the limiting transient analyses of the highest or lowest core flow operation of ABWR. The first purpose of this study is to model the recirculation flow control system (RFCS) and investigate its effect on the system transient behavior forLungmenadvanced boiling water reactor (ABWR) plant. The second purpose of this study is to perform a transient analysis for the limiting pressurization events identified in the Final Safety Analysis Report (FSAR) of the Lungmen Advanced Boiling Water Reactor (ABWR) plant, using a thermal-hydraulic code different from that used in the Lungmen FSAR. The analysis results of key system parameters´ responses are then compared with those shown in the FSAR. This work also serves as an independent check and verification of the FSAR analysis result. The four transients selected are: (1) one reactor internal pump (RIP) trip, and (2) loss of feedwater heating. (3) Load Rejection with No Bypass, and (4) One Single Turbine Control Valve Closure (Fast Closure Model). These four transients are simulated and △CPR (Delta Critical Power Ratio) are caculated in this study, using the RETRAN-02 System Model in order to perform the verification of the FSAR transient analysis. The Analysis results show that the difference of the parameters′ response between the cases of automatic RFCS and manual RFCS can be predicted and identified clearly. The thermal limit parameters (ΔCPR) of the two transients for the automatic RFCS and manual RFCS cases have also been calculated using the RETRAN-02 hot channel model and CPR calculation methodology developed in this study. In general, the good agreement between the RETRAN-02 calculation and the FSAR results for the transient response of the core power, the core inlet flow, the system pressure, and the core inlet enthalpy is an indication that the △CPR is expected to be in good agreement with the FSAR △CPR results if the fuel vender CPR correlation is employed for the determination of CPR. Based on this, it is expected that the RETRAN-02 model developed in this study can be employed to support operational transient analysis if the model is benchmarked further with the appropriate data, e.g., the Lungmen plant power test data, etc.

並列關鍵字

ABWR RIP CPR RETRAN-02

參考文獻


17. GEXL14 Correlation for GE14 Fuel, NEDC-32851P, Rev.2, September 2001.
21. Yih-Chyun Tzang, Ray-Feng Chiang, Yuh-Ming Ferng, Bau-Shei Pei, “Effect of automatic recirculation flow control on the transient response for Lungmen ABWR plant”, Nuclear Engineering and Design vol. 239, pp. 2923–2930, 2009.
22. Yih-Chyun Tzang, Ray-Feng Chiang, Yng-Ruey Yuan, Yuh-Ming Ferng, Bau-Shei Pei, “Pressurization transient analyses of the Lungmen ABWR plant using RETRAN-02”, Nuclear Engineering and Design vol. 240, pp. 868–879, 2010.
1. Taiwan Power Company, Final Safety Analysis Report for Lungmen Units 1 and 2, R2原能會審查中版本,台灣電力股份有限公司,台灣,中華民國99年4月。
2. 台灣電力股份有限公司,進步型沸水式反應器(ABWR)訓練教材,台灣電力股份有限公司,台灣,中華民國95年12月。

被引用紀錄


馬紹仕(2011)。龍門電廠起動測試暫態研究〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1908201112574405

延伸閱讀