透過您的圖書館登入
IP:3.128.78.30
  • 學位論文

A Credibility Based Cooperative Spectrum Sensing Algorithm with Two-Step Detection for Cognitive Radio Systems

基於信任度與兩階段決策之合作式感知無線電頻譜偵測演算法

指導教授 : 王晉良
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


感知無線電(cognitive radio)為一個有效提升無線通訊頻譜使用效率的技術。在感知無線電系統中,次要使用者(secondary user)可藉由頻譜偵測(spectrum sensing)技術來有效利用主要使用者(primary user)的頻帶。然而無線通道的遮蔽(shadowing)與衰減(fading)的效應,造成單一次要使用者無法提供可靠的偵測效能;為了解決此問題,合作式頻譜偵測(cooperative spectrum sensing)的方法已被提出。傳統合作式頻譜偵測方法中,當次要使用者數目較多時,會造成回傳偵測結果所需的頻寬負載增加。另一方面,傳統合作式方法中,對所有次要使用者所採用的誤警機率(probability of false alarm)都相同,亦即即使有部分次要使用者處在較差的衰落通道中,被分配的到偵測可信度依然和處在較佳的通道的次要使用者相同,此狀況會明顯影響到偵測上的效能。 在此篇論文中,我們將探討如何有效降低回傳所需的偵測位元數且增加偵測上的效能,兩階段之合作式頻譜偵測的方法首先被提出來改進回傳的頻寬效率,此方法基本的概念為假使有一個或多個可靠的次要使用者於第一階段被系統所設定的嚴格的偵測門檻值給篩選出來,系統會立即判定主要使用者為存在,否則偵測程序將進入第二階段,此時滿足第二階段所需條件的次要使用者會回傳軟性資訊至基地台來進行偵測,此方法可避免不必要的偵測位元數的發生。 接著為了改進偵測上的效能,我們提出信任度之合作式頻譜偵測的方法,此方法會根據先前的偵測結果來估算出每個次要使用者的偵測可靠度,並用來調整誤警機率,藉由分配較高的誤警機率於較可靠的次要使用者身上,除了達到較佳的合作式頻譜偵測的效能,還可易於系統上的分析。最後,結合信任度和兩階段偵測方法,可同時改進感知無線電系統的頻譜利用率和頻寬效率。 為了有效評估此篇論文所提出方法的偵測效能,我們提供在雷利衰減通道(Rayleigh fading channel)下之偵測機率與平均偵測位元數的理論分析,且模擬結果接近於理論分析。經由模擬結果我們可以看出,比較雙門檻值偵測方法,所提出的方法可達到較佳的偵測效能與較少的平均偵測位元數。

並列摘要


Cognitive radio (CR) is an emerging technology for enhancing the efficiency of wireless spectrum utilization. In cognitive radio systems, secondary users (SUs) are allowed to access the frequency bands of a primary user (PU) by spectrum sensing. However, a single SU usually cannot provide robust sensing performance due to the effects of hidden nodes, shadowing, and fading channels. In order to overcome this problem, cooperative spectrum sensing techniques have been proposed in the literature. In conventional cooperative spectrum sensing schemes, the required bandwidth of feedback channels become larger with the SUs increased. Moreover, all the SUs are required to have an identical probability of false alarm, that is, the CR system supposes that all the sensing nodes have the same sensing reliability even though some of them are suffering from a deep fade. In this case, the detection performance will be degraded. This thesis investigates how to reduce the average number of sensing bits as well as to improve the detection performance. A two-step detection method for cooperative spectrum sensing is first proposed for improving the bandwidth efficiency over feedback channels. The basic idea is that if one or more reliable SUs have been sifted out during the first step by a strict decision threshold, then the CR system declares that the PU is active at once and no second-step operations are required; otherwise, the detection process will get into the second step, where the SUs transmit their soft information to the cognitive radio base station for further detection. In this way, unnecessary feedback bits transmitted from those unreliable SUs can be avoided. In order to improve the detection performance, a credibility method for cooperative spectrum sensing is also proposed. This method evaluates the sensing reliability of SUs based on previous sensing results, and then adjusts the probability of false alarm of each SU. Assigning a higher probability of false alarm for a more reliable SU, we can have better detection performance for cooperative spectrum sensing. With the credibility method and the two-step detection method, we can improve the spectrum utilization and the bandwidth efficiency of CR systems simultaneously. To verify the effectiveness of the proposed cooperative spectrum sensing scheme, the probability of false alarm, the probability of detection, and the average number of sensing bits are analyzed under Rayleigh fading channels, where the results are close to those obtained from simulations. All these support that the proposed approach outperforms the double threshold detection method in terms of the detection performance and the average number of sensing bits.

參考文獻


[3]M. McHenry, E. Livsics, T. Nguyen, and N. Majumdar, “XG dynamic spectrum access field test results,” IEEE Commun. Mag., vol. 45, pp. 51-57, Jun. 2007.
[5]S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, pp. 201-220, Feb. 2005.
[6]H. Kim and K. Shin, “Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 7, no. 5, pp. 533–545, May 2008.
[8]G. Turin, “Minimax strategies for matched-filter detection,” IEEE Trans. Commun., vol. 23, no.11, pp. 1370-1371, Nov. 1975.
[9]D. Cabric, S. M. Mishra, and R. Brodersen, ”Implementation issues in spectrum sensing for cognitive radios,” in Proc. 38th Asilomar Conf. Signals, Systems and Computers (ACSSC ’04), Pacific Grove, CA, Nov. 2004, pp. 772-776.

延伸閱讀