透過您的圖書館登入
IP:3.149.251.142
  • 學位論文

耗散粒子動力學模擬X形剛性-柔性多親性嵌段共聚物於溶液中之相態衍變

Morphological Transition of X-shaped Rod-Coil Polyphilic Block Copolymer in Solution via Dissipative Particle Dynamics Simulation

指導教授 : 張榮語
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用耗散粒子動力學模擬研究X形剛性-柔性多親性嵌段共聚物於溶液中之平衡結構,此X形分子由剛性嵌段核心與兩端極性基團構成主鏈後再接枝兩條柔軟側鏈形成。藉由改變兩條側鏈間相容性、側鏈長度與系統中溶劑濃度來探討對形態的影響。 研究結果指出調整側鏈長度以及溶液濃度,能夠有效的控制形態變化;改變側鏈間的相容性則能形成階級性結構。在純共聚物態和溶劑濃度φ_S=10%、30%系統中大多呈現由主鏈形成的網狀結構,但在特定的側鏈長度下會有完美的形態出現,如六角網柱狀結構;φ_S=50、70%溶劑濃度下形成各式的網狀結構,發現透過側鏈長度與溶劑濃度可以調控複雜奈米級網狀的密集程度;φ_S=90%系統中,會形成微胞結構,尤其在不相容側鏈條件時形成的微胞階級性結構在生醫材料上非常具有應用潛力。由於本論文模擬的分子結構性質特殊,因而發現許多新穎的結構,期許這些結果能提供在生醫和光電上的新材料開發與想法。

並列摘要


Dissipative Particle Dynamics Simulations are used to investigate the morphological transition of X-shaped rod-coil polyphilic molecules in solution. These X-shaped molecules consist of a rod-like core, with a polar group at each end and two lateral chains. The influences of changing the two lateral chains relative miscibility, lateral chains length and solvent concentration in solution on the morphologies are discussed. The results show that changing the two lateral chains length and the solvent concentration can effectively control the morphologies. And the hierarchical structure-within-structure will be formed by changing relative miscibility of the two laterals chains. At solvent concentration φ_S=10%, the morphologies are almost network structures which are formed by main chain of X-shaped molecules. Interestingly, perfect morphologies formed at specific lateral chains length, such as hexagonal column network structure. At solvent concentration φ_S=30% and 50%, the X-shaped molecules self-assemble into vary kinds of network structures, and the network density can be easily controlled by changing the length of two lateral chains and the concentration. At solvent concentration φ_S=90%, the molecules will self-assemble into micelle hierarchical structure-within-structure while the two lateral chains are in immiscibility condition, that kind of structures is very attractive in biomaterials. Since the structure of molecules model is complex and special, there are much novel morphology are formed. We hope these results can be applied in biomaterials and optoelectronics materials.

參考文獻


49. 羅予祥, 耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化. 國立清華大學化學工程學研究所碩士論文, 2012.
1. Tao, Y.F., B.W. Ma, and R.A. Segalman, Self-Assembly of Rod-Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008. 41(19): p. 7152-7159.
2. Lim, Y.B., K.S. Moon, and M. Lee, Rod-coil block molecules: their aqueous self-assembly and biomaterials applications. Journal of Materials Chemistry, 2008. 18(25): p. 2909-2918.
3. Kirkensgaard, J.J.K., Novel network morphologies and compositionally robust 3-colored perforated lamellar phase in A(BC)(2) mikto-arm star copolymer melts. Soft Matter, 2010. 6(24): p. 6102-6108.
4. Guo, Y.Y., Z.W. Ma, Z.J. Ding, and R.K.Y. Li, Study of hierarchical microstructures self-assembled by pi-shaped ABC block copolymers in dilute solution using self-consistent field theory. Journal of Colloid and Interface Science, 2012. 379: p. 48-55.

延伸閱讀