前人所發展之電觸媒可在無額外添加還原劑的情況下利用自產電動勢(Electromotive force, EMF)促進氮氧化物分解並具有氮氧化物零排放之潛力,為更進一步使電觸媒的成本與放大製造及加工方面更為簡易,因此將電觸媒概念與金屬支撐型固態氧化物燃料電池結構相結合,製作出金屬支撐型電化學雙電池板(Metal-supported electrochemical double-cell plates, MS-EDP),並進行模擬廢氣實驗。 實驗結果顯示以金屬取代以往所使用之Ni/YSZ作為陽極結構後,MS-EDP依舊具有電觸媒特性,並且於陽極側添加鎳粉可進一步增進脫硝表現。而MS-EDP亦如電觸媒般隨著氧濃度的增加,EMF亦隨之增加,進而表現出優異的脫硝效果,同時MS-EDP於模擬工廠低含氧濃度之廢氣條件下,於低濃度NOx範圍亦顯示出優於SCR之脫硝效果。另外在MS-EDP模組測試中,更進一步顯示模擬廢氣在經由MS-EDP模組後,轉化率隨著MS-EDP片數的增加而提升,展現出實際商業化應用之潛力。 而MS-EDP所選用之觸媒為商業化(La0.8Sr0.2)0.95CoO3-GDC觸媒與自製La0.6Sr0.4CoO3-GDC觸媒,兩者之觸媒重量皆在0.021g/cm2附近時具有最佳觸媒效果。
By virtue of graduated person’s efforts, the Electro-Catalysis Catalyst (ECC) can deal with the NOx emission without further use of reductants. For convenience concerns, we combine the idea of metal-supported solid oxide fuel cell and the idea of ECC to construct the Metal-Supported Electrochemical Double-cell Plates (MS-EDP) for the purpose of reducing costs and difficulty in manufacture process. After a series of experiments, the result shows that MS-EDP’s deNOx ability can be enhanced by the addition of Ni powders and the higher the oxygen concentration is, the better MS-EDP’s deNOx ability is. Moreover, we simulated the emission condition in factories to test the MS-EDP’s deNOx ability, and we found that MS-EDP and MS-EDP Module’s deNOx ability is better than Selective Catalytic Reduction (SCR) in low NOx concentration. This result shows the potential and feasibility of MS-EDP in dealing with the NOx emissions of factories. Furthermore, the optimum of catalyst weight for MS-EDP is 0.021 g/cm2 for both (La0.8Sr0.2)0.95CoO3-GDC and La0.6Sr0.4CoO3-GDC catalysts, and MS-EDP would show the best deNOx ability.