透過您的圖書館登入
IP:18.220.140.5
  • 學位論文

有機電激發光材料和光敏化太陽能電池染料的合成與元件製備

HASH(0x1af705e0)

指導教授 : 季昀

摘要


第一部份短摘 經由MVK和相對應的carbaldehyde試劑耦合,再加入(NH4)2CO3縮環,我們合成三個含pyrrolide基團位基的配位基。這三個配位基分別和硼試劑BPh3反應得到[(pyro)BPh2] (1-2a)、[(noro)BPh2] (1-2b) 和 [(xaro)BPh2] (1-2c),其中(pyro)H、(noro)H和(xaro)H分別為2-pyridyl、2-quinolinyl和2-quinoxalinyl pyrrole。化合物1-2a ~ 1-2c在溶液中有強的螢光發光,最大發射波長分別為490 nm、 510 nm和575 nm。其中化合物1-2c也被製成電致發光元件,以化合物1-2c為發光層,BCP為電洞阻擋層材料。此元件的放射光為飽和的橘紅色,最大發射波長為580 nm,啟動電壓為8 V,在15 V下發光強度可達5000 cd/m2,最大外部量子效率為0.5%。 Abstract of first part Three systematically functionalized pyrrolide ligands were prepared from coupling of methyl vinyl ketone and the respective carbaldehyde reagents, followed by treatment of the pre-formed dicarbonyl compounds with (NH4)2CO3 to generate the required pyrrolide fragment. These ligands readily reacted with the boron reagent BPh3 to afford the complexes [(pyro)BPh2] (1-2a), [(noro)BPh2] (1-2b) and [(xaro)BPh2] (1-2c), where (pyro)H, (noro)H and (xaro)H stand for the 2-pyridyl, 2-quinolinyl and 2-quinoxalinyl pyrrole, respectively. Complexes 1-2a ~ 1-2c give stable solutions in air, and show strong photoluminescence with emission peak maximum located at 490 nm, 510 nm and 575 nm, respectively. EL devices based on 1-2c were fabricated. The intrinsic EL emission from 1-2c as the unusual host-emitter, with the emission peak maximum shifted to 580 nm, was observed when BCP was used as the hole blocking material. This device gives saturated red-orange emission of 5000 cd/m2 at 15 V and with an onset driving voltage of 8 V, while the maximum external quantum yield is estimated to be 0.5%. 第二部份短摘 我們合成一系列新的銥(III)化合物(2-1~2-5),這一系列化合物的配位基為benzoquinoxaline。其中化合物2-1經過X-ray結構鑑定,是扭曲的八面體結構,化合物2-1中唯一的pyrazolate基團上的氮和benzoquinoxaline上的氮以cis的方式和銥原子鍵結,而兩個benzoquinoxaline配位元基以錯開方式和銥原子鍵結。化合物2-1~2-5 為NIR的磷光發光,最大琺射波長在910–930 nm。經由的TDDFT理論計算,推斷光譜主要的電子轉移為benzoquinoxaline 3π–π* 分子內電子轉移(ILCT)和金屬(Ir)到配位基benzoquinoxaline的電子轉移(MLCT)。由於NIR的能階差較小,無輻射衰減可能會經由次要的途徑如benzoquinoxaline上phenyl環的轉動將能量釋出,以致NIR的發射光強度相對減弱。 化合物2-1 Abstract of second part A new series of new iridium (III) complexes (2-1~2-5) bearing ligands derived from benzoquinoxaline were designed and synthesized. X-ray structural analyses of 2-1 reveal a distorted octahedral geometry around the Ir atom in which the pyrazolate chelate is located opposite to the cis-oriented nitrogen donor atoms of benzoquinoxaline, while the benzoquinoxaline ligands adopt an eclipse configuration and their coordinated nitrogen atoms and carbon adopt transand cis-orientation, respectively. Complexes 2-1~2-5 exhibit moderate NIR phosphorescence with peak maxima located at around 910–930 nm. As supported by the TDDFT approach, the transition mainly involves benzoquinoxaline 3π–π* intraligand charge transfer (ILCT) and metal (Ir) to benzoquinoxaline charge transfer (MLCT) of which the spectroscopy and dynamics of relaxation have been thoroughly investigated. The relatively weak NIR emission can be tentatively rationalized by the low energy gap of which the radiationless deactivation may be governed by nearly temperature-independent, weak-bonding motions in combination with a minor channel incorporating small torsional motions associated with phenyl ring in the benzoquinoxaline sites. 第三部份短摘 新的釕化合物3-6~3-8含有三配位的bipyridine–pyrazolate輔助配位基,可以更好的延伸π共軛系統,可能增加光電轉換效率、在TiO2表面的上染率和長期光照下染料的穩定性。以化合物3-6~3-8為染料製成光敏化太陽能電池,上染率分別為2.4 × 10–7 mol cm–2 、 1.5 × 10–7 mol cm–2和 1.3 × 10–7 mol cm–2,相較高於商用染料N3的上染率 (1.1 × 10–7 mol cm–2)。以化合物3-8為染料的光敏化太陽能電池,以標準的AM1.5為光源,其光電轉換效率可高達5.65%(對照的N3光敏化太陽能電池為6.01%),短路電流15.6 mAcm–2,開路電壓0.64 V,fill factor為0.57。以bipyridine-pyrazolate三牙基為配位基的光敏化染料所製的太陽能電池,在長期光照下有很好的穩定性,期望在DSSCs上有很好的應用。 三牙基配位基3-1 Abstract of third part A new type of ruthenium complexes 3-6~3-8 with tridentate bipyridine–pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π-conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2, and photostability. Structural characterization, photophysical studies, and corresponding theoretical approaches have been made to ensure their fundamental basis. As for dye-sensitized solar cell applications, it was found that 3-6~3-8 possess a larger dye uptake of 2.4 × 10–7 mol cm–2, 1.5 × 10–7 mol cm–2, and 1.3 × 10–7 mol cm–2, respectively, on TiO2 than that of the commercial N3 dye (1.1 × 10–7 mol cm–2). Compound 3-8 works as a highly efficient photosensitizer for the dye-sensitized nanocrystalline TiO2 solar cell, producing a 5.65% solar-light-to-electricity conversion efficiency (compare with 6.01% for N3 in this study), a short-circuit current density of 15.6 mAcm–2, an open-circuit photovoltage of 0.64 V, and a fill factor of 0.57 under standard AM1.5 irradiation (100 mWcm–2). These, in combination with its superior thermal and light-soaking stability, lead to the conclusion that the concomitant tridentate binding properties offered by the bipyridine-pyrazolate ligand render a more stable complexation, such that extended life spans of DSSCs may be expected.

並列摘要


無資料

並列關鍵字

HASH(0x1af78150)

參考文獻


Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(a) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. (b) Tung, Y.-L.; Lee, S.-W.; Chi, Y.; Tao, Y.-T.; Chien, C.-H.; Cheng, Y.-M.; Chou, P.-T.; Peng, S.-M.; Liu, C.-S. J. Mater. Chem. 2005, 15, 460. (c) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971. (d) Tung, Y.-L.; Lee, S.-W.; Chi, Y.; Chen, L.-S.; Shu, C.-F.; Wu, F.-I.; Carty, A. J.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Adv. Mater. 2005, 17, 1059.
(a) Mears, R. J.; Baker. S. R. Opt. Quantum Electron. 1992, 24, 517. (b) Desurvire. E. Phys. Today, 1994, 97, 20. (c) Ono, N.; Ito, S.; Wu, C. H.; Chen, C. H.; Wen, T. C. Chem. Phys. 2000, 262, 467.
(a) Rietveld, I. B.; Kim, E.; Vinogradov, S. A. Tetrahedron 2003, 59, 3821. (b) Rozhkov, V. V.; Khajehpour, M.; Vinogradov, S. A. Inorg. Chem. 2003, 42, 4253.
Caygill, G. B.; Hartshorn, R. M.; Steel. P. J. J. Organomet. Chem. 1990, 382, 455.

延伸閱讀