透過您的圖書館登入
IP:3.145.186.173
  • 學位論文

有機金屬鉑、釕催化烯炔類分子進行環化反應之研究

Platinum and Ruthenium Catalyzed Intramolecular Cyclization of Enynes

指導教授 : 劉瑞雄

摘要


本論文分成三個章節,共五個部分,主要是利用過渡金屬鉑和釕催化具有不飽和雙鍵和參鍵的有機小分子化合物進行環化反應之研究。 第一章節第一部分是我們發表新的三炔類分子進行特定位向的水合環化反應後,可得到雙環醇類化合物,緊接著再發生去水合作用而得到雙環螺酮化合物。此鉑金屬催化劑在進行環化反應時,其反應機構包含:兩次的選擇性水合作用、炔基插入反應以及分子內醛酮縮合反應,最後得到雙環螺酮化合物。 第一章節第二部分是以PtI2錯合物催化官能性的三炔類分子來進行一鍋化水合環化反應,得到四環酮類化合物。三炔類分子在外圍的炔基上皆具備一個多電子傾向的芳香基團,可引導最初的水合反應發生在相鄰炔基的碳上。此串聯式的催化反應機構包含了兩次的炔基水合作用、炔基插入反應以及分子內醛酮縮合反應,最後得到複雜的多環碳化合物。此實驗結果讓我們更進一步了解水分子在炔基上進行水合作用的選擇性及多樣化的結果。 第一章節第三部分是利用PtCl2催化二炔基苯甲醛骨架的分子,經由新的特定選擇位向的親核性加成環化反應可以得到類似Benzopy-rone天然物骨架的產物,而且具有不錯的產率。水分子於此環化反應會先攻擊內部炔基形成三羰基化合物,緊接著發生一串聯式的反應,涉及分子內醛酮縮合反應及芳香環化作用而得到產物;具有酯類官能基的基質經由水合催化反應後,可以得到與天然物Arnottin I結構相似的前驅物,有助於合成此類天然物。 第二章節是利用鉑金屬錯合物催化具有芳香基或者是架橋式的環己烯取代基的三炔類分子來進行分子內或分子間Bergman形式的親核性芳香化反應,成功地得到Chrysene的衍生物。此催化反應的價值在於我們可利用官能性的苯環分子為起始物,即可用來合成新穎的多苯環化合物。此串聯式的環化反應機構包含了Bergman形式的環化機構,炔基插入反應以及加氫脫金屬反應。 第三章節是我們發表了以熱環化及釕金屬錯合物為催化劑,催化具有6,6-雙取代的3,5-雙烯-1-炔類化合物經由1,7-氫轉移的過程作環化反應;而3,5-雙烯-1-炔類化合物的熱環化反應在1號碳為苯基或6號碳為羰基取代時才有較好的結果。因此,我們也藉由改變1號和6號碳上的取代基而增加其反應效率,而1,7-氫轉移的現象類似“質子性”氫的轉移;為了使此反應在合成上更有價值且具有原子經濟效益,我們發展了串聯式醛醇縮合脫水和環化反應,此反應是利用3-烯-1-炔-5-醛類和環酮類分子在弱酸性的釕金屬錯合物CpRu(PPh3)2Cl催化下,可以得到結構複雜的苯環衍生物,且在產率上有不錯的表現,有助於未來在有機合成上的應用。

並列摘要


Chapter I-Part 1 In the first portion, we report a new hydrative cyclization of triynes to afford bicyclic spiro alcohols, which undergo subsequent dehydration to give bicyclic ketones. This platinum catalysis is proposed to comprise a sequence of cascade reactions including: two selective hydrations, alkyne insertion and aldol condensations. Chapter I-Part 2 In the second portion, we report one-pot synthesis of tetracyclic ketones via PtI2-catalyzed hydrative cyclization of trialkyne functionalities. These triyne substrates bear an electron-rich aryl group at the outer alkyne to direct the initial hydration occurring at the adjacent alkynyl carbon. This tandem catalysis is proposed to comprise two alkyne hydrations, an alkyne insertion and an intramolecular aldol condensation. Chapter I-Part 3 In the third portion, we report one-pot synthesis of benzopyrone derivatives from PtCl2-catalyzed hydrative carbocyclization of oxodiynes. This hydrative carbocyclization proceeds through sequential oxo-assisted hydration of two tethered alkynes to give oxo-dione intermediates, followed by intramolecular aldol reactions and aromatization. The substrate with an ester group can undergo platinum-catalyzed hydrative cyclization to yield the precursor of Arnottin I in moderate yield, which is helpful to synthesize this kind of nature products. Chapter II In this chapter, we report a platinum-catalyzed aromatization of trialkyne functionalities bearing both benzene and bridging cyclohexenyl group via intra- and intermolecular nucleophilic additions to form chrysene derivatives efficiency. The importance of this cyclization is reflected by its extension to the synthesis of novel polyaromatic compound. This tandem cyclization is proposed to comprise a Bergman-type cyclization, an alkyne insertion and a hydrodemetalation. Chapter III Chapter III describes the feasibility of thermal and catalytic cyclization of 6,6-disubstituted 3,5-dien-1-ynes via a 1,7-hydrogen shift. Thermal cyclization proceeded only with 3,5-dien-1-ynes bearing an electron-withdrawing C(1)-phenyl or C(6)-carbonyl substituent. On the basis of this structure-activity relationship, we conclude that such a [1,7]-hydrogen shift is characterized by a “protonic” hydrogen shift, which should be catalyzed by π-alkyne activators. To achieve the atom economy, we have developed a tandem aldol condensationdehydration and aromatization catalysis between cycloalkanones and special 3-en-1-yn-5-als using the weakly acidic catalyst CpRu(PPh3)2Cl, which provided complex 1-indanones and α-tetralones with good yields in most cases.

參考文獻


7. Trost, B. M.; Brown, R. E.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 5877.
9. Chen, Y.; Ho, D. M.; Lee, C. J. Am. Chem. Soc. 2005, 127, 12184.
2. (a) Hegedus, L. S. In Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.; University Science Books: Sausalito, California 1999. (b) Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364. (c) de Meijere, A.; von Zezschwitz, P.; Bräse, S. Acc. Chem. Res. 2005, 38, 413.
2. (a) Organic Electroluminescent Materials and Devices; Miyata, S., Nalwa, H. S., Eds.; Gordon and Breach Publishers: Amsterdam, 1997; Chapters 5, 8, 12, and 14. (b) Tang, C. W.; Van slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. (c) Wakimoto, T.; Yonemoto, Y. Japan
3. 相關的評論: (a) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, 2000; Vol. 1-2. (b) Lewis Acid Reagents; Yamamoto, H., Ed.; Oxford University Press: New York, 1999.

延伸閱讀