本論文分為兩個部份,第一部份中,我們利用單醣做為碳源,在四氯化鈦與苯甲醇的反應系統中直接合成出碳包覆二氧化鈦奈米晶粒,並透過真空燒結以提高二氧化鈦的結晶性以及表面碳層的石墨化程度。由於此碳可迅速吸附大量的亞甲基藍,因此碳包覆二氧化鈦奈米晶粒在紫外光的照射下可以快速的將亞甲基藍分解,其光催化活性是一般商用P25二氧化鈦的5.5倍。另一方面,我們發現在此合成條件中加入P25作為晶種可以合成出二氧化鈦三維奈米結構,此結構具有極佳的光催化活性。另外,我們在二氧化鈦奈米材料的表面沉積鉑金屬,所製備之鉑@二氧化鈦奈米複合材料具有使甲醇氧化的電催化活性,雖然氧化甲醇所產生的電流值比商用觸媒E-TEK (20 wt% Pt on Vulcan)低,但是甲醇與一氧化碳的氧化電位都較商用觸媒為低,表示此鉑@二氧化鈦奈米複合材料可以有效的抑制一氧化碳毒化的程度。 第二部分中,我們將結構導向試劑末端的氫氧基氧化成羧基後利用其來合成中孔洞二氧化矽SBA-15可使其二氧化矽骨架具有較高的縮合程度以及結構中含有額外的中孔洞或是巨孔洞,並且此材料具有傑出的水熱穩定性。另一方面,利用末端氧化的結構導向試劑在pH值等於4的條件下可以直接合成出泡沫狀中孔洞二氧化矽材料。此材料的結構特性可藉由不同的後合成處理來調控,並且可以利用直接共聚合法將其功能化以及可作為模板以奈米鑄造的方式製備出泡沫狀中孔洞碳材。
The first section of the thesis is the preparation of carbon-coated titania in benzyl alcohol by using titanium tetrachloride as a titanium source and fructose as a carbon source. The crystallinity of the anatase nanocrystals and the graphitization degree of the carbon coating can be enhanced by the subsequent heat treatment in vacuum. The carbon-coated titania materials exhibit high adsorption amount and fast photodegradation rate for methylene blue. Similar synthesis condition can be applied to prepare titania 3D nanostructures by a seeding growth process. Furthermore, Pt@TiO2 nanocomposites are prepared and applied as anodic catalysts in direct methanol fuel cell. While Pt@TiO2 nanocomposites produce smaller current than commercial catalyst E-TEK (20wt% Pt on Vulcan), they exhibit lower oxidation potential of methanol and carbon monoxide than E-TEK. In the second section, mesoporous silica SBA-15 have been synthesized by using end-group oxidized structure directing agent. Compared to the conventionally prepared SBA-15, the prepared materials have enhanced degree of silica condensation, better hydrothermal stability and additional intra-particle porosities. Besides, foam-like silica mesophases can be synthesized at pH 4. The structural properties of foam-like silica mesophases can be modified by post-synthesis treatments and the surface can be functionalized by direct-cocondensation. Foam-like mesoporous carbon materials can also be synthesized using foam-like silica mesophases as hard templates by nanocasting.