奈米碳管材料所具有獨特的結構,極佳的機械、熱傳導、化學穩定性與其高深寬比之特性等使其應用潛力極為廣泛,可應用於結構複合材料、儲能材料、奈米導線、奈米探針、場發射元件等。 利用電感式電漿輔助化學氣相沈積( ICP-CVD )方法可以大面積成長以及準直性的奈米碳管,在較低的製程溫度( T < 500 ℃),適合應用在顯示器元件的玻璃基板上。增加場發射特性的方法有二點:一是減少奈米碳管在場發射過程中的屏蔽效應( screen effect )以降低起始電場( turn-on field );以及增加場發射電流的均勻度(uniformity)和穩定性(stability)。 本研究利用多階段的電漿處理與奈米碳管成長製程來達到此目標。首先藉由電漿前處理來控制催化劑密度,以進一步控制奈米碳管之密度,以減少屏蔽效應對場發射特性不良的影響。再利用電漿後處理縮小碳管頂端的催化劑。使得奈米碳管呈現尖錐狀,同時增加奈米碳管以及基板表面的接著性。接著第二階段的奈米碳管再成長製程,使奈米碳管利用頂端縮小的催化劑成長直徑較小的奈米碳管,以增加奈米碳管的長徑比。再利用調變後處理以及再成長的參數,使其場發射特性達到最佳化。 在結果部分,本研究成功發展多階段製程系統在玻璃基板上成長奈米碳管;有效的控制奈米碳管密度以及降低起始電場(從22.68 V /um降到7.16 V /um),達到增進場發射特性的目的。
Direct synthesis of vertically aligned CNFs has been successfully fabricated on display glass substrates at low temperature (< 500 ℃) by inductive couple plasma-enhance chemical vapor deposition (ICP CVD). Such process technique can be easily integrated with micro-fabrication process and can be scaled up for large size substrates. How to decrease the screen effect and turn-on field and increase the uniformity of CNFs is the way to enhance the field emission characteristics. This study used multi-step growth process and plasma treatment to achieve the goal. First, control the density of CNFs by plasma pre-treatment which controlling the size and density of catalytic nanoparticles. Second, diminish the size of catalyst which staying in the tip of CNFs by plasma post-treatment. CNFs exhibit spindt type and increased the adhesion between CNFs and substrate. Then, re-grow small diameter of CNFs on treated catalyst which stay in the tip of CNFs to increase aspect ratio. Optimize the post-treatment and re-growth parameter to enhance the field emission characteristics. This study succeeded to develop multi-step growth process on glass substrate and enhance the field emission characteristics by integrated and optimized to control the size and density of CNFs and decreased turn-on field from 22.68 V / um to 7.16 V / um.