透過您的圖書館登入
IP:3.128.226.211
  • 學位論文

低維度鎵基奈米結構之合成、鑑定及應用研究

Low-Dimensional Ga-Based Nanostructures:Synthesis, Characterizations and Applications

指導教授 : 周立人

摘要


The present thesis focused on the synthesis, characterizations and applications of the one-dimensional Ga-based nanomaterials. The thesis includes the following topics: (1, 2) growth processes of pure GaN and Ga2O3 nanowires, (3, 4) growth processes and nanodevices of Au-peapodded Ga2O3, core-shell Au-Ga2O3, and Au-Ga2O3-GaN (metal-oxide-semiconductor, MOS) nanowires, (5) in-situ observation of Au-Ga2O3 complex nanowires during thermal annealing. Novel metal–insulator heterostructures made of twinned Ga2O3 nanowires embedding discrete gold particles or continuous gold nanowires were through a reaction between gold, gallium, and silica at 800 °C. Both of the two crystallized Au-Ga2O3 complex nanowires investigated on a designed single-nanowire device, exhibit the highly photosenitive absorption of 532 and 632 nm lights, respectively, owing to the localized surface plasma resonance (LSPR) effects of embedded Au nanomaterials in dielectric matrix. Furthermore, the promising field emission proporties of Au-Ga2O3 core-shell nanowires were demonstrated by the measurements of single and multiple nanowires with the turn on field of 0.12-0.24 V/μm in present study. Based on the in-situ observation of Au-Ga2O3 complex nanowires during thermal annealing, in addition, various Au-peapodded nanowires were well-designed by the core-shell Au-Ga2O3 nanowires via thermal annealing processes to be tunable nano-photonic switch devices for visible lights.

並列摘要


本論文主要研究一維鎵基奈米材料的合成、鑑定與應用,共分為以下幾個主題:(1, 2)純氮化鎵、氧化鎵奈米線之合成技術,(3, 4) 一維豆莢狀金-氧化鎵 (Au-Peapodded Gallium Oxide Nanowires)與核殼狀金-氧化鎵 (Core-Shell Au-Gallium Oxide Nanowires) 複合奈米線之合成技術與奈米元件製作,(5)金-氧化鎵複合奈米線之臨場熱退火觀測研究。 藉由金屬鎵、金及二氧化矽於800 °C下反應,便可生成具有雙晶結構之一維豆夾狀及核殼狀金-氧化鎵複合奈米線。此兩種單晶結構之複合奈米線材料,因其具有局部表面電漿共振效應(Localized Surface Plasma Resonance, SPR),而具有對532及632奈米波長之可見光的高感光度吸收效應。 另外,藉由單根及多根一維核殼狀金-氧化鎵奈米線之場發射量測,發現其具有相當低的啟動電場強度(Turn on Field = 0.12-0.24 V/μm),因此很有潛力用來製作電子發射源。另一方面藉由臨場穿透式電子顯微鏡的協助,可將一維核殼狀金-氧化鎵奈米線,經由簡單地熱退火實驗,而製成許多各式各樣的一維豆莢狀金-氧化鎵奈米線,進而製作出對不同的可見光感測奈米元件。

參考文獻


Chapter 1
[1.1] K. Havancsák, “Nanotechnology at Present and its Promises in the Future”, Materials Science Forum, 414-415, (2003), pp 85-94.
[1.2] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration”, Science, 293, (2001), pp 2044-2049.
[1.3] K. E. Drexler, “Machine-Phase Nanotechnology”, Sci. Am. 285, (2001), pp 74-75.
[1.4] V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines”, Chem. Eur. J., 8, (2002),pp 5524-5532.

延伸閱讀