透過您的圖書館登入
IP:3.14.253.221
  • 學位論文

非等莫耳六元CoFeMnTiVxZry (0.4 ≤ x, y ≤ 3)高熵合金之儲氫研究

Hydrogen Storage in CoFeMnTiVxZry (0.4 ≤ x, y ≤ 3) High-Entropy Alloys

指導教授 : 陳瑞凱 林樹均
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


儲氫合金的儲氫量、工作壓力、工作溫度、循環壽命與吸放氫速率都是目前儲氫合金發展過程中所被重視的環節。本研究以真空電弧熔煉製備合金,所用合金均為鑄造態,輔以X光繞射術(XRD)與掃描式電子顯微鏡術(SEM)分析,並以X光能譜分析術(EDS)測定合金成份微結構組成,再利用壓力成分等溫(PCI)曲線,量測合金吸放氫行為。本研究以等莫耳高熵合金為基礎,添加或置換元素,並利用本研究提出的熱力學平均分配法,詳細探討非等莫耳合金的儲氫特性。對Laves相CoFeMnTiVxZry (0.4 ≦ x, y ≦ 3)高熵儲氫合金的初步研究顯示,含Zr成分的合金均可以活化並吸氫,且增加V與Zr含量可以有較大的吸氫量。本研究並提出平均分配法簡化結合焓的計算,得到在同一系統中,合金中每莫耳原子計算結合焓與最大莫耳比儲氫量呈線性關係。在不同系統中,總能量是決定最大莫耳比儲氫量的重要因素。

並列摘要


Storage capacity, working pressure and temperature, cycle life, and rate of absorption and desorption in hydrogen storage are current emphasized developing issues. We use a vacuum arc remelter to prepare as-cast alloys. The alloys are characterized by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffractometry (XRD). Pressure-composition-isotherm (PCI) curves are used to investigate the absorption and desorption of hydrogen. After detailed investigation we conclude that both equal- and non-equal-molar high-entropy alloys have a high potentiality in hydrogen storage. Results on Laves phase-related CoFeMnTiVxZry (0.4 ≦ x, y ≦ 3) high-entropy alloys shows that with Zr as a component, high-entropy alloys are easily activated and absorb hydrogen. Simultaneous addition of Zr and V improves the capacity of hydrogen absorption. In this experiment, we first adopt the most popularly used equal-molar compositions in high-entropy alloys as a base to find a suitable alloy series, then change the relative amount among components in alloys or make substitution for elements to investigate in detail the effects of elements and non-equal molar compositions on the hydrogen storage properties. An equipartition method (EPM) for calculation formation enthalpy of multicomponent metal hydrides proposed in this study shows a linear relationship between enthalpy per mole atom in alloy and maximum storage capacity in atomic ratio for a single system. On the other hand, for different systems total energy determines the maximum storage capacity among systems.

參考文獻


1 T. Gramham, Philosophical Transactions of the Royal Society of
London, 156 (1866) 399
3 H. Zijlstra, F. F. Westendorp, Solid State Communications, 7(12)
Reports, 25 (1970) 133
Emmenegger, Journal of Power Sources, 118 (2003) 1

被引用紀錄


林偉恩(2009)。CoFe0.5-2.5MnTi0.5-2.5VZr與AlMgNi0.3-1.0TiZr 高熵儲氫合金之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2009.00407
王佳文(2010)。以鎂與鎳為基礎的儲氫合金之開發與研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1901201111404967
劉宗憲(2010)。非等莫耳六元CoxFeMnyTiVZr (0 ≤ x, y ≤ 2)高熵合金之儲氫研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1901201111404865
李迴(2013)。CrFexMnTiyVzZru (0 ≤ x, y, z, u ≤ 2) 高熵合金之儲氫研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2511201311344930
張翊凡(2014)。CrFeMnTiVZr高熵儲氫合金 用作鎳氫電池負極之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2912201413531759

延伸閱讀