透過您的圖書館登入
IP:3.135.216.174
  • 學位論文

銅銦硒奈米粒子用於鋰離子電池負極上的研究

The Study of CuInSe2 Nanoparticle as a Lithium-ion Battery Anode Material

指導教授 : 段興宇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇研究使用三元銅銦硒奈米粒子作為鋰離子電池負極材料。利用heating-up的方法合成出大量的銅銦硒奈米粒子。透過X射線繞射儀、穿透式電子顯微鏡、元素分析儀做材料分析鑑定。最後藉由電化學儀器進行測試。在室溫下,以電流密度0.1C、電壓視窗在0.01V和2.5V之間的情況下對鋰離子電池充放電,銅銦硒奈米粒子平均電容約在580mAh/g左右,與一般市售電池的負極材料石墨相比高出接近兩倍。除此之外電池經過20次充放電後,其電池穩定性也相當優異。同時也透過循環伏安法、X射線繞射儀等量測,推測當電池充放電時候,內部進行的反應機制。由於銅銦硒奈米粒子擁有高比電容量、循環壽命長、快速充電下結構保持穩定等優點,在未來的鋰離子電池發展中,銅銦硒奈米粒子具有相當大的發展潛力。

並列摘要


In this study, we use CuInSe2 nanocrystals as an anode material for lithium ion batteries. Gram-scale uniform CuInSe2 nanoparticles without any size selection were synthesized by the heating-up method. As- obtained nanoparticles were characterized by tools including through X-ray differaction (XRD), LR/HR-TEM, and EDS. At ambient temperature, discharge-charge cycling was performed in the voltage window of 0.01V-2.5V (vs. Li metal) at a current density of 100µA/cm2 which corresponds to about the 0.1C rate, showing a reversible capacity of about 600 mAh/g. The excellent electrochemical capacity and stable life performance of CuInSe2 nanoparticles were demonstrated. Based on the analysis of cyclic voltammetry (CV) and ex-situ XRD, reaction mechanism of CuInSe2 nanoparticles with lithium was proposed. CuInSe2 nanoparticles have advantages of faire stable capacity, long batteries cycle life and good performance in high rate test, making it potential anode materials for future lithium ion batteries.

並列關鍵字

無資料

參考文獻


1. Schalkwijk, W.; Scrosati, B., Advances in Lithium Ion Batteries IntroductionAdvances in Lithium-Ion Batteries. Schalkwijk, W.; Scrosati, B., Eds. Springer US: 2002; pp 1-5.
2. Marchioni, F.; Star, K.; Menke, E.; Buffeteau, T.; Servant, L.; Dunn, B.; Wudl, F., Protection of Lithium Metal Surfaces Using Chlorosilanes. Langmuir 2007, 23 (23), 11597-11602.
3. Patil, A.; Patil, V.; Shin, D. W.; Choi, J. W.; Paik, D. S.; Yoon, S. J., Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 2008, 43 (8-9), 1913-1942.
4. Boyle, T. J.; Ingersoll, D.; Alam, T. M.; Tafoya, C. J.; Rodriguez, M. A.; Vanheusden, K.; Doughty, D. H., Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of LiCoO2. Chemistry of Materials 1998, 10 (8), 2270-2276.
5. Kalaiselvi, N.; Raajaraajan, A.; Sivagaminathan, B.; Renganathan, N.; Muniyandi, N.; Ragavan, M., Synthesis of optimized LiNiO2 for lithium ion batteries. Ionics 2003, 9 (5), 382-387.

延伸閱讀