透過您的圖書館登入
IP:18.217.109.151
  • 學位論文

高溫純水中316L不銹鋼與52合金異材銲件之應力腐蝕龜裂行為研究

An Investigation into SCC of 316L SS - Alloy52 Dissimilar Metal Welds in Simulated BWR Environments

指導教授 : 葉宗洸
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在過去數十年,隨著沸水式反應器(Boiling Water Reactor, BWR)運轉時間的增長,壓力邊界組件遭受沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)的案例更是逐年增加。欲改善應力腐蝕龜裂的現象,最直接的方法便是透過前處理,降低材料敏感性、消除材料內部的殘留應力;除此之外加氫水化學(Hydrogen Water Chemistry , HWC),使水質呈還原性環境,降低組件材料的電化學腐蝕電位,也可更效防治IGSCC的發生。 該實驗主要針對316L不鏽鋼和52鎳基合金,進行異材銲接,評估銲道、熱影響區及接合面等區域之應力腐蝕現象。除此之外也評估銲件經固溶退火、敏化熱處理以及珠擊處理,對應力腐蝕龜裂防治的效益。試驗方式採用圓棒拉伸試樣,在模擬沸水式反應器之高溫純水中,進行慢應變速率拉伸(Slow Strain Rate Testing , SSRT),以評估材料之機械性質;試樣拉伸後,使用掃描式電子顯微鏡,觀察材料之斷裂面形態。透過上述種種分析,研究材料之高溫抗腐蝕性質。 結果顯示,銲件經固溶退火後,敏化程度明顯降低,斷裂面完全沒更IGSCC的現象,使得延展性大幅提升。敏化熱處理後,材料的延性、強度同時下降,且隨著敏化時間增長,材料的敏化程度隨之上升,而機械性質隨之下降,即使作了加氫水化學後,也無法完全避免IGSCC。珠擊後之銲件,使材料強度以及延展性同時上升,且更效降低IGSCC的發生。 關鍵字:輕水式反應器、異材金屬焊件、應力腐蝕龜裂、殘留應力、珠擊處理、敏化處理、加氫水化學、慢應變速率拉伸。

參考文獻


(1) 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels” Journal of Nuclear Materials 233-237(1996)1393-1396.
(2) M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, “Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions” Corrosion . Vol.55 No.11 pp.1101-1109.
(3) S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C, ” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
(5) Kang Soo Kima,∗, Ho Jin Leea, Bong Sang Leea et al “Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld” Nuclear Engineering and Design 239 (2009) 2771–2777
(6) G.H. Aydog˘du, M.K. Aydinol “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behavior of AISI 316L type stainless steel ”Corrosion Science 48 (2006) 3565–3583

延伸閱讀