透過您的圖書館登入
IP:3.138.200.66
  • 學位論文

非週期性超精細准相位匹配光學超晶格之研究

Hyperfine aperiodic optical superlattice for quasi phase-matching

指導教授 : 楊尚達
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文利用Sequential search algorithm達成Hyperfine aperiodic optical superlattice (H-AOS)晶體之設計,在不違反製程下限所能達到的區域大小下限之下,將晶格長度的解析度推進到製程能力極限。在晶體長度相同的狀況下,3根等高不等間距匹配尖峰,與5根V型等間距匹配尖峰兩個設計目標,本方法所得之轉換效率超越以往最高的方法達到9%,同時運算時間也大幅縮短十餘倍。另外我們也分別設計:(1) 40個匹配尖峰設計。(2) 1~2.4μm大頻寬範圍之相位匹配尖峰設計。(3)立方函數分佈之相位匹配尖峰群設計。(4)Super Gaussian形狀之連續相位匹配功率頻譜設計。(5)寬頻平坦連續相位匹配功率頻譜設計。(6)無sidelobe之sinc2相位匹配功率頻譜,以證明此方法在設計上的彈性,並以程式隨機計算的方式證明此方法已經極度趨近全域的最佳解。

並列摘要


In this paper, we report a new method, hyperfine aperiodic optical superlattice (H-AOS) optimized by sequential search algorithm (SS). The domain size of H-AOS remains longer than the minimum domain length dmin (~4.5 m), which can be reliable poled and the resolution is equal to the photolithographic mask (~100nm). H-AOS method enhance the overall efficiency by ~9% and greatly reduce the computation time by a factor of ~15 simultaneously compare to NOS method in 3 PM peaks and 5 PM peaks design. We also demonstrate the (1) 40 PM peaks, (2) 1.15~2.4m wide 4 PM peaks, (3) cubic shape PM peaks, (4) Super gaussian shape continuous PM curve, (5) continuous flat-top PM band, (6) sidelobe suppression for sinc2 PM power spectrum, to show the flexibility of our method. We also use program to show that the design by H-AOS is very closed to the global maximum.

參考文獻


1. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener,“Multiple channel wavelength conversion using engineered quasi-phasematching structures in LiNbO3 waveguides,” Opt. Lett., 24, 1157-1159, (1999).
2. Y. W. Lee, F. C. Fan, and Y. C. Huang, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett., 27, 2191-2193, (2002).
3. Jui-Yu Lai, Yi-Jhen Liu, Hung-Yu Wu, Yen-Hung Chen, and Shang-Da Yang, "Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm," Opt. Express 18, 5328-5337 (2010).
4. Masaki Asobe, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Optics. Lett., 32, 3388-3390, (2007).
5. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” Journal of lightwave tech., 25, 710-718, (2007).

延伸閱讀