透過您的圖書館登入
IP:18.218.172.249
  • 學位論文

使用雙可旋轉相位延遲器及固定極化器之最佳化極化量測儀

An Optimized Polarimeter using Double Rotatable Retarder and Fixed Polarizer

指導教授 : 楊尚達

摘要


極化量測儀(Polarimeter)為量測光極化態(State of Polarization)之架構。典型的極化量測儀藉由記錄待測光在四個特定極化態(0線極化、90線極化、45線極化、以及右旋正圓極化)的相對能量分量,以求得代表光極化態的史托克斯參數(Stokes parameter)。本論文提出「極化態量測角度誤差梯度」以定量分析所有可能之待測極化態遭受量測雜訊的影響程度。其次以Monte Carlo演算法找出可對應到「最小量測角度誤差梯度平均值」的四個最佳橢圓極化態分量組合。為了在實驗上以之取代典型之0線極化、90線極化、45線極化、右旋正圓極化組合,我們進一步修改典型之「雙可旋轉式相位延遲器與固定極化器」(Double Rotatable Retarder and Fixed Polarizer, DRFP)架構,將其中一個四分之一波片(90相位延遲器)改為半波片(180相位延遲器),以便量測待測光在任意橢圓極化態的能量分量。此一量測技術我們稱之為「最佳化DRFP極化量測儀」(Optimized DRFP Polarimeter)。最後以實驗驗證:(一)以「極化態量測角度誤差梯度」預測之誤差與實驗值之間的相關係數高達0.935。(二)最佳化DRFP極化量測儀在不同待測極化態、不同雜訊強度之下均可較典型的極化量測儀量有較低的量測角度誤差。

參考文獻


[2] Z. Sekera, “Light Scattering in the Atmosphere and the Polarization of Sky Light.” J. Opt. Soc. Am., 47, 484-490 (1957).
[3] H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light.” Appl. Opt., 16, 3200-3205 (1977).
[4] R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix
[5] S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components”, Opt. Communication, 214, 1-8 (2002).
[6] L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator”, Appl. Opt., 49, 4687-4699 (2010).

延伸閱讀