透過您的圖書館登入
IP:3.139.83.151
  • 學位論文

整合奈米碳管高分子複合薄膜於微機電製程並應用於微型感測元件之研究

Integration of CNTs-Polymer Composites with MEMS Micromachining for Micro Sensing Devices Application

指導教授 : 方維倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


奈米碳管擁有許多特別的材料性質,可以應用在不同的研究領域。為了發揮奈米碳管獨特的特性,必須能夠將之整合於微元件上,以連接後端訊號截取界面,應用於高科技電子產品。本研究將奈米碳管與高分子材料結合,並整合於微機電製程技術,開發批量化且可重複製作的奈米碳管微型感測元件,透過製程整合平台的開發,可將奈米等級的材料製作於微米等級的元件上,並完成許多奈米碳管在電性上的感測。本研究將奈米碳管高分子複合薄膜整合於三項關鍵的微機電製程技術:(1)整合奈米碳管於高分子微加工技術,以撓性奈米碳管觸覺感測器為載具;(2)整合奈米碳管於矽基體型微加工技術,以奈米碳管壓力、加速度及溫度感測器為載具;(3)整合三維奈米碳管於矽基面型微加工技術,以三維奈米碳管掃瞄探針及奈米碳管纖毛感測器為載具。藉由整合奈米碳管於微機電加工技術,可建立關鍵製程模組及彈性製程平台,並藉以促成奈米碳管元件積體化,達到量產為目標,發揮更有效率及價值的應用。

並列摘要


Carbon nanotubes (CNTs) have a lot of special material properties in application of various fields. In order to reveal these unique properties, it is necessary to integrate CNTs with micro-devices, which can implement the signal interface connection for high-tech electronic products application. This research integrates CNTs and polymer materials with MEMS fabrication processes to manufacture batch and reproducible CNTs micro sensing devices. It is possible to fabricate the material with nano scale on the sensing device with micro scale by developing the integrated manufacturing platform. Moreover, more electrical properties of CNTs can be characterizied. The present research integrates CNTs-polymer composites into three important MEMS fabrication processes: (1) integrating CNTs with polymer micromachining and taking the flexible CNTs-based tactile sensor as the development carrier; (2) integrating CNTs with silicon-based bulk micromachining, and taking the CNT-based pressure sensor, g-sensor, and temperature sensor as the development carrier; (3) integrating 3D CNTs stacks with silicon-based surface micromachining, and taking the CNT-based 3D sensing probe and hair cell sensor as the development carrier. Core fabrication modules and flexible manufacturing platform will be built up to increase the density of CNTs micro-devices. In summary, the presented integrated manufacturing plateform is aiming to bring CNTs micro-devices into mass production, and to spread out more efficient properties and higher value applications.

參考文獻


[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol 354, pp. 56-58, 1991.
[2] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A: Materials Science & Processing, vol. 69, pp. 255-260, 1999.
[3] Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method,” Nanotechnology, vol. 20, pp. 145702, 2009.
[4] Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941-2944, 2000.
[5] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Applied Physics Letters, vol. 79, pp. 1172-1174, 2001.