透過您的圖書館登入
IP:18.225.31.77
  • 學位論文

二維奈米電漿光子晶格中粒子的傳輸與捕捉行為

Transport and trapping in two-dimensional nanoscale plasmonic optical lattice

指導教授 : 楊雅棠

摘要


近年來,光學鑷子技術的發展,創建了各種維度的週期性位勢來影響粒子的 行為。由於傳統光學鑷子的繞射極限限制,要將實驗尺度縮小到奈米等級極為困 難。近年來,電漿子光學捕捉可以克服傳統光學鑷子的繞射極限,其表面電漿可 以在遠低於繞射極限下經由共振增強光學強度。本論文研究了直徑 100 nm 與 500 nm 粒子於電漿子加強的二維光晶格中的傳輸以及捕捉行為。本實驗之光晶 格位勢是由金結構的二維陣列所組成,且由高斯雷射光束所激發共振,在此光晶 格的位勢中,奈米粒子會被引導、捕捉以及排列於此二維陣列當中。我們同樣清 楚觀察到粒子排列成六角最密堆積結構於此二維奈米電漿光晶格陣列中。本論文 會詳細介紹光學鑷子的架設以及電漿子結構的製程與計算,最後討論粒子於結構 中的行為。

並列摘要


Recently, optical tweezers has been created various dimensions of periodic potential lattice for affecting the behavior of particles. According to the limitation of diffraction limit, it is difficult to shrink the experiment into nanoscale. In recent, plasmanic enhanced optical trapping can overcome the limitation of traditional optical tweezers because the surface plasmon concentrate light far below the diffraction limits and enhance optical intensity by resonance. In this thesis, we research the transport and trapping behavior of nanospheres of diameter 500 nm and 100 nm in two-dimensional nanoscale plasmanic optical lattice. Optical potential of the lattice is created by a two-dimensional of gold nanostructure array, and the plasmon resonance is illuminated by Gaussian beam. We observe the transport and trapping behavior of nanospheres in this optical potential. The stacking of diameter 500 nm spheres into hexagonal closed pack crystalline in this potential is also observed clearly. In this thesis, we introduce the setup of optical system clearly and make an explanation about the calculation and fabrication process of plasmonic structures.

參考文獻


[1] Risken, H., The Fokker-Plank Equation 2nd Ed., Berlin: Springer, 1984.; Astumian R. D. Thermodynamics and kinetics of a brownian moter. Science 1997, 276, 917-922.
[2] Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290.
[3] Grier, D. A revolution in optical manipulation. Nature 2003, 424, 810–816.
[4] Neuman, K. C.; Block S. M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809.
[5] Dholakia, K.; Reece, P. Optical micromanipulation takes hold. Nano Today 2006, 1, 18–27

延伸閱讀