本研究利用發展成熟之半導體標準製程,在矽基材上進行一微小化的薄膜拉伸測試。由於半導體製程中的薄膜沉積會形成特殊邊界(Nomially-Clamped),此邊界會造成額外力矩而產生出平面變形的缺點,本研究利用這項缺點,並藉由白光干涉儀次奈米等級的出平面量測精度,達到更精確位移量測,將缺點轉成優點,萃取出更準確的薄膜機械性質。此外,提出以後組裝的方式增強其剛性比,使得拉伸過程穩定平滑。最後本研究在製程中引進高分子材料-聚對二甲苯(parylene),利用其共型旋塗(conformal coating)的特性包覆住待測試片避免製程中物理及化學性攻擊,使可受測的材料不因製程限制。此元件結構藉由模組化的概念,設計者可以因應個別特殊需求,在晶圓上建構出合適的模組,搭配相同的製程流程,批量化製造進行微小化拉伸測試。
This study reports a novel tensile testing platform for MEMS thin films by microfabrication. Due to ‘nominally-clamped’ boundary from microfabrication, the boundary exists extra moment leading to out-of-plane deflection which is a disadvantage for MEMS designers. This study primarily changes that innate disadvantage to an advantage that can measure the out-of-plane deflection precisely by WYKO sub-nano scale measurement. We transform the weak point to the strong point to get the thin films mechanical properties precisely. Besides, we assemble the force gauge to improve the stiffness of tensile chips in order to stretch smoothly. Finally, the parylene passivation technique allows the users to change the specimens without limiting by fabrication. This chip consists of specimens, supporting springs modules and connection modules. According to user’s concerns, they can construct their own modules and extract material properties .