透過您的圖書館登入
IP:3.149.251.155
  • 學位論文

雙鐵核{Fe(NO)2}10-{Fe(NO)2}10及單鐵核{Fe(NO)2}10雙亞硝基鐵錯合物之研究與探討:電化學催化產氫之潛能

Insight Into the Dinuclear {Fe(NO)2}10-{Fe(NO)2}10 and Mononuclear {Fe(NO)2}10 Dinitrosyliron Complexes (DNICs): Potential for Electrocatalytic Hydrogen Production

指導教授 : 廖文峯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


The reversible redox transformations [(NO)2Fe(StBu)2]– [Fe(-StBu)(NO)2]22– (2) [Fe(-StBu)(NO)2]2– [Fe(-StBu)(NO)2]2 are demonstrated. The binding preference of ligands [OPh]–/[SR]– toward the {Fe(NO)2}10-{Fe(NO)2}10 motif of dianionic reduced RRE follows the ligand-displacement series [SR]–>[OPh]–, rationalizing that most of the DNICs and RREs characterized nowadays are bound to protein via cysteinate side chains. Compared to the Fe K-edge pre-edge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)2}9-{Fe(NO)2}9 DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)2}9 DNICs, the {Fe(NO)2}10 reduced DNICs and the {Fe(NO)2}10-{Fe(NO)2}10 dianionic reduced RREs containing S-/O-/N-ligation modes display the characteristic pre-edge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)2}10-{Fe(NO)2}10 dianionic reduced RREs and {Fe(NO)2}10 dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge pre-edge energy, the IR νNO spectra may also be adopted to characterize and discriminate [(NO)2Fe(-StBu)]2 (IR νNO 1809 vw, 1778 s, 1753 s cm-1 (KBr)), [Fe(-StBu)(NO)2]2– (IR νNO 1674 s, 1651 s cm-1 (KBr)), and [Fe(-StBu)(NO)2]22– (IR νNO 1637 m, 1613 s, 1578 s, 1567 s cm-1 (KBr)). Additionally, The fluxional terminal and semibridging NO-coordinate ligands of DNIC [Fe4(-S)2(-NO)2(NO)6]2– (3), a precursor of Roussin’s black salt (RBS), are characterized by IR NO), 15N(NO) NMR, single-crystal X-ray diffraction, and DFT calculations. Compared to the {Fe(NO)2}9 and {Fe(NO)2}10 DNICs/RREs displaying 15N (NO) NMR chemical shift (23 ~ 76 ppm) and (-7.8 ~ 25 ppm), respectively, the first semibridging nitroxyl of complex 3 exhibits the distinct 15N (NO) NMR chemical shift (200.8 and 200.1 ppm), suggesting the 15N (NO) NMR technique can serve as an efficient tool to discriminate the binding fashions of NO. In the last part, the stable {Fe(NO)2}10 reduced DNICs [(NO)2Fe(S(CH2)nS)]2– [ n = 3 (4); n = 2 (5) ] containing chelate dithiolate were synthesized. On the basis of the electrochemistry, and DFT calculations of 4 and 5, the bite angle or ring strain inherent in the chelate-dithiolate-bound DNICs will function to tune the Fe-S bonding level, so as to modulate the configurations and electrochemical properties of DNICs (E1/2 = -1.64 V for 4 and E1/2 = -1.33 V for 5). The dithiolate ligands are also introduced to build [(NO)2Fe(-2-SC2H4S)(-NO)Fe(NO)]2– (7) bearing a bridging NO as well as the fluxional isomers of [(NO)2Fe(-2-SC3H6S)(-NO)Fe(NO)]2– (8-a) and [(NO)2Fe(-SC3H6S)Fe(NO)2]2– (8-b). Intriguingly, the electrochemical studies demonstrate that complex 7, resembling to the calculated double-reduced intermediate [(CO)3Fe(-2-edt)(-CO)Fe(CO)2]2– of [FeFe]-H2ase model, act as an active molecular electrocatalyst for proton reduction from weak acid with low overpotential.

並列摘要


無資料

並列關鍵字

Nitric oxide DNIC Hydrogenase

參考文獻


2. Koshland, D. E. Science 1992, 258, 1861.
4. Marletta, M. A. Cell 1994, 78, 927.
17. (a) Friebe, A.; Koesling, D. Circ. Res. 2003, 93, 96. (b) Evgenov, O. V.; Pacher, P.; Schmidt, P. M.; Haskó, G.; Schmidt, H. H. H. W.; Stasch J.-P. Nat. Rev. Drug Discovery 2006, 5, 755.
23. Pomposiello P. J.; Demple, B. Trends Biotechnol. 2001, 19, 109.
26. (a) Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. (b) Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K. EMBO J. 2002, 21, 3235. (c) Welter, R.; Yu, L.; Yu, C. A. Arch. Biochem. Biophys. 1996, 331, 9. (d) Goussias, C.; Deligiannakis, Y.; Sanakis, Y.; Ioannidis, N.; Petrouleas, V. Biochemistry 2002, 41, 15212.

延伸閱讀