透過您的圖書館登入
IP:3.135.201.190
  • 學位論文

熱門景點斷鏈位置隱私保護方法

Combine Cache and Chained Cell-shaped for Location privacy in Hot Zone

指導教授 : 楊明豪 羅嘉寧

摘要


當使用者旅行時,常因人地生疏,而利用智慧型手機內建之定位功能,以適地性服務(Location-based service,LBS)查詢興趣點(Point of Interest,POI),然而卻因提供真實位置進行查詢,而洩漏其個人資訊及隱私。目前被提出的LBS服務隱私保護方法並無同時考慮實際地圖狀況、使用者連續查詢、以及揭露位置模糊演算法的情況下仍能確保隱私保護強度。 為了提供使用者安全且有效率的LBS服務,本論文提出一個斷鏈區域隱私保護方法,我們的方法結合歷史查詢紀錄與鏈狀蜂巢網格模糊區域並利用多人查詢方式,使攻擊者無法透過道路速限等地圖背景知識彙整出使用者移動路徑,除了利用快取(Cache)資料來提高效能,透過旅遊地區較為熱門之興趣點,提高快取資料的命中率、增加查詢之效能外,還考量到使用者在行進間產生的連續查詢問題,使用實際地圖道路結合鏈狀蜂巢網格模糊區域,以加強對使用者隱私之保障。此外為了增加虛擬查詢的真實性及減少產生的模糊區域數量,我們透過批次產生多個使用者的虛擬查詢,使得各自的模糊區域與查詢可以成為其它人的虛擬查詢,以同時滿足各自的隱私強度。 此外,我們的方法將可完全相容(transparent)於使用者,使其不需更新智慧型手機之軟、硬體,亦不必改變原有的使用習慣,便能安全而有效率地使用連續移動LBS查詢服務。利用我們的方法,除了可節省伺服器之計算量與傳輸量,同時也不會因此而降低對使用者隱私安全之保護。

並列摘要


Because the strange environment when people travel. Users input their queries and use the smartphones’ built-in positioning system to find nearby points of interest (POI) from location based services (LBS). However, users provide real position to query lead to leak personal information and privacy. Currently LBS service privacy protection methods isn’t taking into account the actual map, continuous queries, and known algorithm attack. In order to provide secure and efficient LBS service to users. This paper presents a method combine cache, chained cell-shaped and multi query for location privacy. Attacker can’t use speed limit and other background knowledge to get users’ trajectory. In addition to using the cache data to improve performance and popular POI of location improve hit rate of cache data. Moreover, we produce virtual queries through batch, such that the respective queries can become someone's virtual query to satisfy their privacy strength. Finally, our approach can save computation and transmission capacity of the server and can’t reduce the user's privacy.

參考文獻


[54] 楊明豪, 羅嘉寧, 邱柏銓, “鏈狀蜂巢模糊區域保護連續查詢位置隱私,” 台灣網際網路研討會, 2014.
[3] C. A. Ardagna, G. Livraga, P. Samarati, “Protecting Privacy of User Information in Continuous Location-Based Services,” in Proceeding of IEEE 15th International Conference on Computational Science and Engineering, pp.162-169, 2012.
[4] P. Berkhin, “A Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, Springer, pp. 25-71, 2006.
[6] C. Y. Chow and M. F. Mokbel, “Enabling Private Continuous Queries for Revealed User Locations,” in Proceeding of the 10th International Symposium, SSTD, pp.258-175, 2007.
[7] C. Y. Chow and M. F. Mokbel, “Trajectory Privacy in Location-based Services and Data Publication,” SIGKDD Explorations Newsletter, vol. 13, no. 1, pp. 19-29, 2011.

延伸閱讀