透過您的圖書館登入
IP:18.225.235.17
  • 學位論文

自走車配備光學雷達並以協作避免碰撞之研究

A Study of AGV Collaboration with Lidar for Collision Avoidance at Warehouse Intersection

指導教授 : 項衛中

摘要


製造技術依據人類的需求不斷進步,目前許多工廠在自動化設備也引進了虛 實整合系統的概念,例如倉儲作業中的自走車。因此,具有無線通信網路的 自動化技術是當前工業 4.0 的基本要求。一般情况下,自走車根據分配的任 務協作執行多個倉庫作業,一些障礙物,如牆壁,架子和其他物體會干擾自 走車的運動。因此,自走車不僅具有自行避開障礙物的能力,而且還要為提 高自走車整體的性能提供相關位置資訊。 本研究在兩台自走車之間使用 ROS 平台建立無線通信,並運用光學雷 達掃描的資料與相關的避撞邏輯,整合開發了自走車協作系統,並以三種場 景進行自走車運動實驗,驗證該自走車協作系統在兩車交會時能協同完成任 務。本研究應用統計的變異數分析法,找出在自走車運動規劃與控制時,自 走車最終位置誤差值相關的主要因素。 從單因子變異數分析結果來看,不同場景可能會影響 X 和 Y 座標單 獨的誤差值。但是,在雙因子變異數分析結果中,這些場景可能不會顯著的 影響 X 和 Y 座標整體的誤差值。在此實驗中,X 和 Y 座標之間的誤差值 在統計上是不同的,這意味著實驗的控制程式需要進行修改,以減少兩個座 標相互的誤差值。

並列摘要


Manufacturing technology makes progress continually according to human needs, right now several factories implement cyber-physical system concept for automatic equipment, such as Automated Guided Vehicles in warehousing operation. Therefore, automation technology with wireless communication network is basic requirement for current Industry 4.0. Commonly, AGVs cooperatively perform multiple jobs based on their assigned tasks in the warehouse. Several obstacles, such as walls, poles, shelves, and other objects, have interfered the movement of AGVs. AGVs not only have the ability to avoid obstacles but also provide information for improving the whole performance of AGVs. This study has developed a collaboration system which used the ROS to build up wireless communication between two AGVs and integrated with obstacle avoidance algorithm based on the data scanned by LIDAR. An experiment was conducted with three scenarios to validate this AGV system in a real-world intersection. The statistical ANOVA method was applied to find out major factors of motion planning with respect to the error values of final AGV positions. From the one-way ANOVA results, the scenarios may affect the error values of X and Y coordinates individually. However, in the two-way ANOVA results, the scenarios may not significantly affect error values of X and Y coordinates together. Error values between the X and Y error coordinates are statistically different in this experiment, and it means the control codes for the experiment need some modification to reduce the errors in both coordinates.

參考文獻


[1] Y. Zhang, Z. Zhu and J. Lv, "CPS-Based Smart Control Model for Shopfloor Material Handling", IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1764-1775, 2017.
[2] R. Yan, L. Jackson and S. Dunnett, "A study for further exploring the advantages of using multi-load automated guided vehicles", Journal of Manufacturing Systems, vol. 57, pp. 19-30, 2020.
[3] Y. Liu, S. Ji, Z. Su and D. Guo, "Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm", PLOS ONE, vol. 14, no. 12, p. e0226161, 2019.
[4] W. Małopolski, "A sustainable and conflict-free operation of AGVs in a square topology", Computers Industrial Engineering, vol. 126, pp. 472-481, 2018.
[5] H. Lin and F. Yang, "Design and implementation of a CPS‐based predictive maintenance and automated management platform", IET Cyber-Physical Systems: Theory Applications, vol. 5, no. 1, pp. 100-109, 2019.

延伸閱讀