透過您的圖書館登入
IP:3.12.151.153
  • 學位論文

應用核磁共振技術研究自身終止高分歧寡聚物之合成反應以及調控其反應產物

NMR Study on the Synthesis and Optimization of Self-Terminated Oligomers with hyper-Branched Architecture

指導教授 : 賈緒威

摘要


近年來,鋰離子電池的快速發展,已經廣泛的應用在許多電子設備上,並成為生活中不可或缺的一環,且隨著動力電池對高功率的需求,鋰離子電池的效能已有很大的進展。然而,熱失控 ( Thermal runaway )是使用鋰離子電池時的潛在風險。自身終止高分歧寡聚物(STOBA)已被證明是鋰離子電池最有效的電解質安全添加劑。據此,了解STOBA形成機制將有助於改善此種安全添加劑的功能與應用。 核磁共振(NMR)技術能夠對STOBA 的原料物雙馬來亞醯胺(4,4’-Bismaleimidodi-phenylmethane,以下簡稱為 BMI1000)及其衍生物 (BMI2300)、巴比妥酸 (Barbituric Acid,以下簡稱為 BTA) 、溶劑甲基吡咯烷酮 (N-Methyl-2- pyrrolidone,以下簡稱為 NMP)以及對STOBA合成反應進行分子等級的研究。推測 STOBA 合成反應在化學動力學的可能反應機制及其鍵結行為,並藉此推測 STOBA 的分子結構與其作為鋰離子電池安全添加劑之安全作動行為機制。 在本研究中,透過一系列對於反應物本身、溶劑本身、模型反應以及STOBA合成時在反應過程中的隨時間演化下的臨場(in situ) NMR來研究STOBA合成反應,並且在不同反應物比例下重複實驗以確認反應機理。實驗結果證實STOBA合成反應的產物取決於溶劑、反應物的類型、反應物的比例、濃度、反應溫度、反應時間、攪拌速率和添加順序等因素。藉由 NMR 分析並佐以 SAXS, SEM, GPC, EPR 的實驗結果,我們證實 STOBA 合成的主要反應機制包含 Michael addition 與 radical homopolymerization 兩種,且在隨反應時間的演化下,兩種反應機制會互相競爭。

並列摘要


In recent years, lithium-ion batteries is quickly developing, and it is widely used in many electronic devices, even become an indispensable part of life. With the demand for high power of power batteries, the performance of lithium-ion batteries has made great progress. However, thermal runaway is a potential risk when using lithium-ion batteries. Self-terminating high-density oligomers (STOBA) have been proven to be the most effective electrolyte safe additive for lithium-ion batteries. Therefore, understanding the STOBA formation mechanism will help us to improve the function and application of this safe additive. Nuclear magnetic resonance (NMR) technology can be used as a derivative of STOBA raw material, 4,4'-Bismaleimidodi-phenylmethane (hereinafter referred to as BMI1000) (BMI2300) and Barbituric Acid (hereinafter referred to as BTA) and the STOBA synthesis reaction in the solvent methylpyrrolidone (N-Methyl-2-pyrrolidone, hereinafter abbreviated as NMP) were studied at a molecular level. Surmising the possible reaction mechanism and the bonding of reactants in STOBA synthesis reaction in chemical kinetics in order to speculate STOBA molecular structure and the safety mechanism actuation behavior when STOBA as a safe additive of lithium-ion battery. In the present study, the STOBA synthesis reaction was studied at different elapsed times by a series of NMR experiments during the reaction, and the experiment was repeated at different reactant ratios to confirm the reaction mechanism. The results show that the product of the STOBA synthesis reaction was depending on factors such as solvent, reactant type, concentration, reaction temperature, reaction time, stirring rate, and order of addition. According to NMR and SAXS, SEM, GPC supplemented, we confirmed that the main reaction mechanism of STOBA synthesis consists of two kinds: Michael addition reaction and homopolymerization radical reaction. Two reaction mechanisms competing under different reaction time.

並列關鍵字

NMR BMI BTA NMP STOBA

參考文獻


參考文獻
1. T. Nagaura, K. Tozawa, Prog. Batteries Sol. Cells 1990, 9, 209
2. N. Cole, W.F. Gruber, U. S. Patent 3 1964, 127, 414
3. R.E. Gawley, Synthesis 1976, 12, 777.
4. P. Wieland, K. Miescher, Helv.Chim. Acta 1950, 33, 2215

延伸閱讀