透過您的圖書館登入
IP:18.191.132.105
  • 學位論文

具有H-infinity強健性之模糊模式追蹤控制

Fuzzy Model Based Tracking Control with H-infinity Performance

指導教授 : 練光祐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 T-S 模糊模式化方式(T-S fuzzy model),是這幾年來被廣泛使用於處理非線性系統的控制方法之一。此方法由Takagi和Sugeno兩位學者在1985年所提出,能將非線性系統以IF-THEN的規則化成許多的一階線性系統來表示,至於在控制器和估測器的設計上是使用所謂平行分布補償(PDC)的概念去設計的,穩定性的分析以及控制增益最後可以使用線性矩陣不等式(LMIs)的方法去求解。追蹤控制問題在實際應用上一直是一個重要的討論方向,諸如機械手臂軌跡追蹤控制、彈道追蹤控制、飛行器姿態追蹤控制等。在本論文我們將以T-S模糊模式化來探討非線性系統的追蹤控制的問題。我們利用非線性 的觀念去設計處理非線性連續時間系統追蹤控制的問題,另外量測所有的狀態是困難且昂貴的工作,再者感測器也常因伴隨著一些雜訊而產出誤差,所以我們也討論觀察器的設計方法藉以估測不可量測得到的狀態。描述系統(descriptor system)與傳統的狀態空間表示式相比,能夠更廣泛的來描述一個系統,在最近幾年此概念也已經延伸到T-S模糊模式系統,當模糊描述系統以T-S模式法來表示,它的好處是會使模糊規則的數目減少,這種可使規則數減少的方法對以LMI為主的控制設計有很大的幫助。 在論文最後我們利用DS1102和SIMULINK的軟體來建構出我們要的實作環境,利用強健追蹤控制器去實現路邊停車控制,而實作的結果也驗證了我們理論推導的可行性。

並列摘要


abstract There has recently been a rapid growing interest in using T-S fuzzy model to approximate nonlinear systems. The T-S fuzzy dynamic model, which originates from Takagi and Sugeno, is described by fuzzy IF-THEN rules in which the consequent parts represent local linear models. Once a fuzzy representation of a nonlinear system is described by if-then rules, the control problem then becomes to find a local linear/nonlinear compensator to achieve the desired objective. The controller and observer design of the T-S fuzzy system is carried out via the so called parallel distributed compensation (PDC) approach. The stability analysis and controller synthesis are then systematically formulated into linear matrix inequalities (LMIs). The LMI problem can be solved very efficiently by convex optimization techniques. Tracking control design is also an important issue for practical applications, such as robotic tracking control, missile tracking control, and attitude tracking control of aircraft. In this thesis, we will study the tracking control problem of a nonlinear system by the T-S fuzzy model. Based on the nonlinear $H_infty $ criterion, the controller is designed to cope with the tracking control problem for a nonlinear continuous-time systems. Then, we know that measuring full states can be difficult and costly. Moreover, sensors are often subject to noise. An observer is designed to estimate the immeasurable states. It has long been known that descriptor systems have a tighter representations for a wider class of systems in comparison to traditional state-space representation. Recently this concept has been extended to T-S fuzzy model systems. On the other hand, if the fuzzy descriptor system is used, the number fuzzy rules will be decreased. This rule reduction is an important issue for LMI-based control synthesis since larger number of LMI rules may lead to infeasible problems. Finally, a real time control of parallel parking is presented in this thesis. We utilize the robust tracking controller to realize parallel parking. Based on the DS1102 and SIMULINK, we can easily use build-up blocks to establish our experimental environment. Our experimental result verifies the theoretical derivation in this thesis.

參考文獻


fuzzy control systems,' Fuzzy Sets and Systems vol. 45, pp.
135-156, 1992.
compensation of nonlinear systems by Takagi-Sugeno fuzzy model,'
Proceedings of the FUZZ-IEEE/IFES vol. 95, pp. 531-538, 1995.
K. Tanaka, M. Sano, 'A robust stabilization problem of

被引用紀錄


陳韋存(2010)。基於T-S模糊控制與灰色理論之自走車軌跡追蹤〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201000867
Chiu, C. C. (2003). 以線性矩陣不等式及疊代線性矩陣不等式分析大型模糊系統的穩定度 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu200300624

延伸閱讀