本論文研究的目的是研製永磁線型同步馬達伺服驅動系統 與發展智慧型控制系統,以達到具有強健性之精密定位的目的。本論文首先研製一由電流控制的脈波寬度調變電壓源反流器、磁場導向機構、座標轉換器及保護電路所組成之磁場導向的永磁線型同步馬達驅動系統,然後設計一積分-比例位置控制器以控制永磁線型同步馬達的動子位置,而積分-比例位置控制器的設計係利用估測到的動子參數,使其滿足系統在時域命令時的追隨規格。其次利用擾動觀測器觀測干擾外力,並將其觀測值前饋至積分-比例控制器,以增加永磁線型同步馬達驅動系統的強健性。為了進一步加大永磁線型同步馬達驅動系統在參數變化和外來干擾時的強健控制性能,提出以遞迴式類神經網路做為補償器來取代擾動觀測器。再者,為了發展永磁線型同步馬達驅動系統在不同週期性命令輸入時的強健性,提 出遞迴式類神經網路控制器來控制永磁線型同步馬達的動子位置。此外,為了補償最佳控制法則和遞迴式類神經網路控制器之間的近似誤差,發展以Lyapunov 穩定度為基礎之遞迴式類神經網路的混合型控制系統和適應混合型控制系統,以達到永磁線型同步馬達驅動系統之強健控制。最後提出一以遞迴式模糊類神經網路為基礎之積分-比例位置控制器線上增益調整的控制系統,控制永磁線型同步馬達以符合週期性命令的追隨規格,並且增加驅動系統的強健性。上述各控制系統之有效性均由模擬和實測結果來加以驗證。
The purposes of this dissertation is develop a servo drivesystem with intelligent control system for a permanent magnet linear synchronous motor (PMLSM) to achieve precision control with robustness. First, a field-oriented PMLSM servo drive system which consists of a ramp comparison current-controlled PWM VSI, a field-orientation mechanism, a coordinate translator and protect circuits is implemented. Next, an integral-proportional (IP) position controller is introduced to control the mover position of the PMLSM. The IP position controller is designed according to the estimated mover parameters to match the time-domain command tracking specifications. Then, a disturbance observer is implemented and the observed disturbance force is fed forward to increase the robustness of the PMLSM drive system. Moreover, to increase the control performance of the PMLSM drive system under the occurrence of parameter variations and external disturbance, a RNN compensator is proposed to replace a disturbance observer. Furthermore, to increase the robustness of the PMLSM drive system for different periodic command inputs, a RNN controller is proposed to control the mover position of the PMLSM. In addition, in order to compensate approximation error between the optimal control law and the RNN controller, hybrid control system and adaptive hybrid control system of the Lyapunov stability based on a RNN are developed to increase the robustness of the PMLSM drive system. Finally, to increase the robustness of the PMLSM drive system an IP control system with on-line gain tuning using recurrent fuzzy neural network (RFNN) is proposed to match periodic command tracking specifications for position control of the PMLSM. The effectiveness of the proposed control schemes is demonstrated by some simulated and experimental results.