T-S模糊模式(T-S fuzzy model),是這幾年來廣泛使用於處理非線性系統的控制方法之一。將非線性系統以模糊理論中的IF-THEN規則庫來取代,且其推論部份為線性方程式的形式為其主要特色,所以此模式化方式可近似或完整的表示某非線性系統。至於在控制器和估測器的設計上是使用所謂的平行分佈補償(PDC)的概念去設計,在最後並將穩定性分析的問題轉換為線性矩陣不等式(LMIs)的型式並用Matlab去求解。 在本論文中,以T-S模糊理論來設計PWM升降壓型電源轉換器的控制器。首先運用狀態空間平均法建立切換式轉換器非線性系統的動態方程式,並做積分型控制器的輸出調整,使系統中穩態誤差等於零。其做法乃將狀態參考點轉移至直流工作點之後,導入T-S模糊模式,以Lyapunov函數做系統穩定性分析,並利用線性矩陣不等式技術設計控制器的控制增益,最後以Matlab完成閉迴路系統模擬。 第二階段,以電子電路實作,並將模擬與實作結果比較,證明T-S模糊理論設計PWM升降壓型電源轉換器控制器,在負載變化或電源電壓變動下均有較佳的穩壓效果。
Nowadays, T-S fuzzy model is a rapid growing modeling method which originates from Takagi and Sugeno. It is described by fuzzy IF-THEN rules where the consequent parts are local linear models. So it can easily approximate or exactly represent a nonlinear system. Once a fuzzy representation of a nonlinear system is described by if-then rules, the control problem becomes to find a local linear or nonlinear compensator to achieve the desired objective. When considering controller and observer design we use the conception of parallel distributed compensation (PDC) to carry out these designs. The stability analysis and controller synthesis are then systematically formulated into linear matrix inequalities (LMIs). The LMI problem can be solved very efficiently by convex optimization techniques. In this thesis, we apply T-S fuzzy theory to design the controller of PWM buck-boost converter. First, we use state-space averaging method to obtain the dynamic equations of the converters. An integral-type controller is introduced to deal with the output regulation problem. After using coordinate translation, a T-S fuzzy model suitable for designing control gains is formulated. The control gains are obtained by solving a set of LMIs. Finally, we end up with close-loop system simulations. Second, we perform electrical implementation. The experiment results for the developed PWM buck-boost converter show satisfactory performance even that the loading and the input voltage suffer from changing.