透過您的圖書館登入
IP:3.145.74.54
  • 學位論文

鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究

The Kinetics and Electromagnetic-Wave Absortion Material of Crystallization of Nanosized Ni-Zn ferrite Powders Prepared by the Hydrothermal Method

指導教授 : 王宏文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 本研究主要是以Ni-Zn 鐵氧磁體材料為主,以水熱法製備奈米級Ni-Zn鐵氧磁粉並嘗試以水熱反應過程中的實驗條件(如:溫度,時 間,pH值,溶劑等…)控制其粒子所形成的大小。並以Arrhenius equation計算水熱法製備Ni-Zn Ferrite時的活化能為56.19Kj/mole。由結果顯示隨著水熱反應時間的增加、溫度的上升、溶劑極性的增加,粉體的結晶性較好,粒徑也相對的較大。 以氧化物混合法製備Ni-Zn Ferrite添加5wt%之三種金屬元(Co、 Cu、V2O5)與水熱法所製備的粉末比較,以獲得不同粒徑大小及不 同摻雜,對電磁波吸收的關係及影響;將試片厚度控制在5mm時, 米級粉體其電磁波吸收的段較高,約在6GHz左右,有-25dB的吸收; 當粉體粒徑增加時,其吸收的頻段會隨之降低,約在2GHz時可達到 -25dB的吸收效果。

關鍵字

鐵氧磁體 電磁波 水熱法

並列摘要


Abstract Nanosized powders of Ni0.5Zn0.5 Fe2O4 with well-developed spinel phases were prepared by the hydrothermal method. An average particle size about 10 ~ 20 nm of Ni-Zn ferrite powder is obtained. The crystallization of the spinel ferrites was promoted by the increase of reaction temperature and time. The activation energy for this process is calculated around 56.19 kJ/mol. The electromagnetic properties of these materials, namely permittivity and permeability were measured in 0.8-3GHz and 2-15GHz frequency range. Ni-Zn ferrite reflection losses achieve the satisfactory value of –25dB at 6GHz when particle size about 12nm, with the increase of the particle size the microwave absorption frequency are shift to 2GHz for the thickness of 5mm.

並列關鍵字

Electromagnetic-Wave ferrite hydrothermal

參考文獻


2. Barb D., Diamandesu L., Rusi. A., R. Tarabasanu, M. Marariu and V.Teodorescu, “Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic properties”,J Mater. Sci., 21(4), 1118-1123, 1986.
3. T. Aoyama, K. Hirota and O. Yamaguchi, “Suppression of hydrogen segregation at grain boundary by boron addition in L12-type Ni3(Si,Ti) alloy” J.Am. Ceram. Soc., 79(10), 2792-2794, 1996.
4. S. Komarneni, E. Frangean, E. Brevel and R.Roy, “Hydrothermal preparation of ultrafine ferrites and their sintering”, J. Am. Ceram. Soc., 71(1), C-26-C-28, 1988
5. M. Rozman and M. Drofenik, “Sintering of nanosized MnZn ferrite powders.”J. Am. Ceram. Soc., 81(7), 1757-1764, 1998.
6. M. Rozman and M. Drofenik, “Hydrothermal synthesis of manganese zinc ferrites.” J. Am. Ceram. Soc., 78(9), 2449-2455, 1995.

被引用紀錄


姚思帆(2013)。Fe-B-Si-Cr非晶粉末與Ni-Zn鐵氧體複合材料磁性性質之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00414
李俊宏(2013)。利用微波電漿束化學氣相沉積法成長類鑽碳與奈米碳管薄膜之電性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00049
王帥(2011)。以微波電漿束化學氣相沉積系統於石英基材成長之類鑽碳薄膜的電磁性能〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00348
Yu, B. L. (2006). 電磁遮蔽之無電鍍銅硫粉末/EVA複合材料之研究 [master's thesis, Tatung University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0081-0607200917240289
黃盈蓁(2009)。鎳鋅鐵氧磁體/碳纖維複合薄膜電磁波吸收行為之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2707200914542100

延伸閱讀