透過您的圖書館登入
IP:18.117.127.127
  • 學位論文

微熱管溝槽液-氣接觸面相互影響之分析

A Study of Liquid-Vapor Interface Interaction in a Micro Heat Pipe.

指導教授 : 許政行
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文主要修正Cotter最大熱傳量的預測模型,在微熱管中針對單一V型溝槽,利用圓柱座標系統,分析汽體流動對液體流動的影響,解得溝槽內液體流動速度,以得到單一溝槽內的體積流率。藉由體積流率定義無因次液體流動形狀因子 ,使Cotter最大熱傳量的預測模型加入液-氣接觸面的摩擦影響。 藉由引入無因次液-汽接觸面流動參數 ,將汽體流動對液體流動的影響加入分析程序中,當 越大,將會明顯降低 值,由結果顯示 越大,汽體流動對液體流動影響越大;在 為1.5時、且接觸角(contact angle) 為10度時,本文計算之最大熱傳量和Babin的銅-水微熱管實驗值相符。在三角形熱管中,藉由本文獲得 。結果也顯示最大熱傳量及 受固-液面接觸角的影響,最大熱傳量及 隨著接觸角 增加而增加。

並列摘要


The present study modifies Cotter’s model for predicting the maximum heat transport capacity and discusses the performance of a single V-shaped microgroove of the Micro heat pipe. A cylindrical coordinate system is used to analyze the correlated between the liquid flow velocity and vapor flow direction, which will affect the behavior of liquid surface and liquid flow velocity, and to obtain the relating volumetric flow-rate in the single microgroove. Then, in order to include the frictional effect of the liquid-vapor interaction into the Cotter’s model, a dimensionless liquid flow shape factor, , which is defined by the volumetric flow-rate, is introduced to predict the maximum heat transport capacity. Introduce a dimensionless number , represent the strength of the friction effect of the vapor-liquid interface flow, into the correlated relation between vapor flow and liquid flow in the analytical process. The results indicated that as value increases, the liquid flow influenced by the vapor flow also increases, which is obviously resulting the reducing values of . The predicted maximum heat transport capacity agrees well with Babin’s experimental of a copper-water micro heat pipe data for the case of and contact angle . In a triangular micro heat pipe, the results indicated that maximum heat transport capacity and increases with increasing contact angle .

參考文獻


6.Babin, B.R., Peterson, G. P., and Wu, D., 1990, “Steady-Sate Modeling and Testing of a Micro Heat Pipe,” ASME Journal of Heat Transfer. Vol.112, pp.595-601.
7.Ma, H. B., Peterson, G. P., 1998, “The Heat Transport Capacity of Micro Heat Pipes,” ASME Journal of Transactions., Vol. 120, pp. 1064-1071.
9.Xu, X., and Carey, V. P., 1990, “Film Evaporation Form a Micro-Grooved Surface-An Approximate Heat Transfer Model and Its Comparison With Experimental Data,” AIAA J. of Thermophysics and Heat Transfer, Vol. 4, No. 4. pp. 512-520.
11.Ayyaswamy, P. S. , Catton, I. and Edwards, D.K., “Capillary flow in triangular grooves”, ASME J.Appl.Mech.41, 332-336(1974)
12.Ma, H. B., Peterson, G. P. and Lu, X. J., 1994, “The Influence of Vapor-Liquid Interaction on the Liquid Pressure Drop in Triangular Microgrooves,” Int. J. Heat mass Transfer, Vol. 37, No. 15, pp. 2211-2219.

被引用紀錄


黃泓森(2005)。微熱管V型溝槽開口夾角對熱性能影響之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200500731
余政賢(2008)。任意傾斜角度下三角形溝槽熱傳分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2008.00394
黃詠淮(2006)。液體在微熱管內三角形溝槽之流動之分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2006.00002
盧俊彰(2009)。影響熱管最大熱傳量之參數設計與分析〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1111200916014694

延伸閱讀