透過您的圖書館登入
IP:3.137.187.233
  • 學位論文

迴圈式聚合酶鏈鎖反應微晶片之設計

Design of loop type polymerase chain reaction micro chip

指導教授 : 張耀仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


聚合酶鏈鎖反應(PCR)微晶片在DNA複製上是一個重要的技術,一般所知有微腔室(micro-chamber)PCR晶片以及連續流(continuous flow)PCR晶片兩種,前者可任意決定PCR反應循環次數,後者可固定溫度區塊提供精準PCR反應溫度需求,為結合兩種晶片之優點,本文提供一種創新的微流體PCR晶片,晶片上包含迴圈式微流道、驅動微流道及進/出氣孔,進/出氣孔與外接氣體伺服驅動系統連接,利用氣體進/出氣方式驅動並控制微流道內檢體,使檢體於微流道迴圈內做連續繞圈運動,別於傳統氣體驅動微流體系統僅單方向前進後退。迴圈式微流道一圈分為三個區段,各區段加熱至一不同的溫度,以提供PCR反應所需之三種溫度,如此每繞一圈,即完成一個循環的PCR反應,只要控制其繞圈次數便可控制反應次數,配合即時檢測系統,可在DNA複製效率衰減前即時檢體輸出。在本文中主要描述此PCR晶片內之微流體驅動原理。

並列摘要


Polymerase chain reaction micro fluid chip is a very important technique on DNA replication. There are two kinds of PCR micro chip that are commonly known to the public: micro chamber and continuous flow. Former can decides PCR’s number of reaction cycles while the latter can stabilizes temperature zone which provides accurate PCR’s demand in temperature demand. To combine the advantages that these two PCR have, this paper provides and innovated, brand-new PCR micro fluid chip. On this chip, it contains micro loop-channel, external servo-system, and in/out ventilation holes. The ventilation holes are connected to external air servo-system. Using driving air to initiate and control inside loop-channel’s reagents٫ It allows the reagents to do continuous circular motion within micro loop channel, which differs from the traditional pneumatic micro fluid system that the reagents move only back and forth in a single direction. A loop of micro loop-channel is divided into three sectors, each sector heating up to different temperature to provide three different temperature for PCR’s reaction. So therefore with a loop will complete a cycle of PCR reaction, controlling the number of loops means to control the number of reactions. In Cooperation with real time detection system, we can stop the reaction before degrading of DNA’s amplification efficiency. This paper mainly describes the operation principle of PCR micro chip.

並列關鍵字

Biochip PCR CFD Loop type Microfluid

參考文獻


[2] Daniel, J. H., “Silicon micro-chambers for DNA amplification”, Sensors and Actuators. A71, 81 (1998).
[3] Giordano, B. C., Ferrance, J., Swedberg, S., Huhmer, A. F. R., and Landers, J. P., “Polymerase Chain Reaction in Polymeric Microchips: DNA Amplification in Less Than 240 Seconds”, Anal Biochemistry. 291, 124 (2001).
[4] Schneegaß, I., and Köhler, J. M., "Flow-through polymerase chain reactions in chip thermocyclers", Molecular Biotechnology. 82, 101 (2001).
[5] Kopp, M. U., Mello, A. J., and Manz, A., “Chemical Amplification: Continuous-Flow PCR on a Chip”, Science. 280, 1046 (1998).
[6] Schneegaß, I., Bräutigam, R., and Köhler, J. M., ”Miniaturized flow-through PCR with different template types in a silicon chip thermocycler”, Lab on a Chip. 1, 41 (2001).

延伸閱讀