透過您的圖書館登入
IP:18.216.171.199
  • 學位論文

內藏電磁鄰近感應效應應用於模具快速 加熱之研究

Investigation of Induced Electromagnetic Proximity Effect Used for Rapid Mold Surface Heating in Injection Molding

指導教授 : 陳夏宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


目前3C產品講究產品外觀面高亮度及成型週期短以達高產量之需求。「快速動態模具溫度控制」於熔膠充填階段維持高模溫並充填結束後快速冷卻降溫達成成型之特性,可成功解決傳統射出成型品的常遇外觀問題如熔接線痕、浮纖等,並達成高亮度免噴漆等級外觀面需求,有效縮短成型週期達到經濟效益。 本研究中主要利用內藏式高週波配合電磁場鄰近感應效應(Induced Electromagnetic Proximity Effect),達成模具表面快速加熱之目標。第一階段利用四種不同材質鈹銅、P20、STAVAX 420、W8PHI測試可行性及加熱速率,第二階段利用單水路、三水路、漸擴式三種不同銅管設計,探討銅管與模面間距離4mm與12mm與模面間距1mm、5mm、9mm下模面均勻度、公母模溫差及不同模面間距的影響,最後使用一組表面曲面實驗模塊,進一步評估內藏電磁鄰近感應效應加熱的溫升效果及實際成型之可行性。 研究結果顯示,在鋼材測試下發現鈹銅與P20加熱較緩慢,鋼材W8PHI溫升為7.5℃/s、STAVAX 420為5.6℃/s,由初始模溫40℃、加熱5s、模面間距1mm、銅管深度4mm三種水路設計實驗下,單水路溫升母模為2.3℃/s、公模為3.6℃/s、公母模溫差為6.3℃,三水路溫升母模為4℃/s、公模為2.8℃/s、公母模溫差為5.6℃,漸擴式水路溫升母模為2.1℃/s、公模為1.8℃/s、公母模溫差為1.8℃。在銅管深度12mm下,單水路溫升母模為1.8℃/s、公模為3.4℃/s、公母模溫差為8.3℃,三水路溫升母模為3.3℃/s、公模為2.3℃/s、公母模溫差為6.6℃,漸擴式水路溫升母模為2.4℃/s、公模為2.2℃/s、公母模溫差為0.6℃,顯示三水路溫升速度最快,漸擴式水路公母模溫差最小,在模面間距測試下發現間距越大溫度差異並不明顯,表面曲面測試中,證明使用內藏電磁鄰近感應效應技術能成功在表面曲面之產品表面加熱,對於複雜之成型品可增加其使用

並列摘要


Now 3C products request surface high brightness and reducing cycle time to reach high output. High mold temperature provided great contributions to conventional and advanced injection molded parts. Especially, it can decrease the requirement of high-performance machine, special mold and high flow resin for thin-wall or micro/micro-feature molding processes. The purpose of this study is to develop high-frequency induced electromagnetic proximity effect heating technique to heat mold surface fast. At the first stage, test mold material(beryllium copper、P20、STAVAX 420、W8PHI) feasibility and heat speed. The second, experiment used three kinds of different copper design(the single channel, three channels, expand channel). Probe into copper tube deep from mold surface (4mm、12mm) and mold separate distance(1mm、5mm、9mm) the uniform of mold temperature, the temperature difference of core and cavity and mold separate distance. Last, use the curved surface of mold, assess the benefit of increased mold surface temperature and the feasibility of injection molding. As a results , the material W8PHI temperature raising rate is 7.5℃/s、STAVAX 420 is 5.6℃/s. In mold temperature 40℃, 5s for heating, time mold separate 1mm, copper tube deep 4mm from surface, single channel temperature raising rate is 2.3℃/s in core, cavity is 3.6℃/s; the temperature difference of core and cavity is 6.3℃; three channel temperature raising rate is 4℃/s in core, cavity is 2.8℃/s, the temperature difference of core and cavity is 5.6℃; expand channel temperature raising rate is 2.1℃/s in core, cavity is 1.8℃/s, the temperature difference of core and cavity is 1.8℃. In copper tube deep 12mm from surface, single channel temperature raising rate is 1.8℃/s in core, cavity is 3.4℃/s, the temperature difference of core and cavity is 8.3℃; three channel temperature raising rate is 3.3℃/s in core, cavity is 2.3℃/s, the temperature difference of core and cavity is 6.6℃; expand channel temperature raising rate is 2.4℃/s in core, cavity is 2.2℃/s, the temperature difference of core and cavity is 0.6℃. Find the temperature raising is the maximum in three channels, the temperature difference of core and cavity is minimum in expand channel. In mold separate distance test, find the temperature difference not evident when mold separate more big. In the curved surface of mold test, We successful heating the surface of the mold. The rapidly temperature control can improve the duplication of micro-part molded effectively.

參考文獻


17. 彭信舒 ,”射出成型模具表面瞬間加熱建置與分析之研究”,中原大學機械工程學研究所博士論文 (2003)。
23. 秦進傳,”微結構模具快速變溫技術之研究”,中原大學機械工程學研究所碩士論文 (2005)。
3. P. C. Chang and S. J. Hwang, “Experimental Investigation of Infrared Rapid Surface Heating for Injection Molding” Journal of Applied Polymer Science, 102, 3704-3713 (2006).
4. P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding” International Journal of Heat and Mass Transfer, 49, 3846-3854 (2006).
5. S. Takushi, S. Isao and K. Yasuo, “A New Concept of Active Temperature Control for an Injection Molding Process Using Infrared Radiation Heating,” Polymer Engineering and Science, 42, 2418-2429 (2002).

被引用紀錄


徐嘉樑(2016)。導磁體設計搭配多層式線圈應用於感應加熱均溫性提升之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600569
劉志鴻(2012)。電磁鄰近式感應加熱均勻性提升之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200562
王膺傑(2011)。模具變溫系統快速模溫均勻化之研究〔博士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201100504
秦進傳(2010)。預置式線圈感應式動態模具溫控方法建置與分析之研究〔博士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201001063
沈文揚(2010)。外周包覆式磁場感應加熱應用於模具 快速加熱之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201000679

延伸閱讀