本論文研製作一系列的單接面砷化鎵(GaAs)太陽能電池,主要重點在變化P與N二區間的本質層(Intrinsic layer)厚度,透過開路電壓(Voc)、短路電流密度(Jsc)及填充因子(Fill factor)等參數的變化,探討本質層厚度變化對P-I-N太陽能電池光電轉換效率的影響。 在研究中我們利用有機金屬化學氣相沉積法(MOCVD)在N型砷化鎵(100)基板上,成長P-I-N砷化鎵型太陽能電池,實驗發現改變本質層厚度會造成開路電壓及短路電流密度的變化,本質層厚度越薄,開路電壓越大,與短路電流密度皆會變大,主要原因是由於加入本質層後,使得太陽能電池內建電場變強,電子-電洞對分離的能力增加,進而可增加太陽能電池之光電轉換效率,本研究的目的在於提升砷化鎵單接面太陽能電池的效率,進一步可將此方法利用於目前的三接面太陽能電池,提升三接面太陽能電池的光電轉換效率,以降低目前III-V族太陽能電池的發電成本。
In this thesis we studied a series of gallium arsenide (GaAs) single-junction solar cells with different thicknesses of the intrinsic layer between P and N regions. By inspecting the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (F.F.) and other possible parameters, we found out that the variation of intrinsic layer thickness in the P-I-N structures influenced the conversion efficiency of solar cells. The method of metal organic chemical vapor deposition (MOCVD) was used to deposit the P-I-N structure single junction solar cell on N-type GaAs (100) substrates. It was found that the varied intrinsic layers thickness will change the Voc and Jsc. Both the Voc and Jsc became larger with increasing thickness of intrinsic layer. The inserted intrinsic layer will strengthen the built-in electric field in the solar cell, and hence increase electron - hole pairs separation. As a result, it can promote solar cell conversion efficiency. This method can be further used in the triple-junction solar cell in order to enhance solar cell conversion efficiency and also intentionally reduce the cost of generating power for the III-V solar cells.