本論文主要以綠色能源科技為主軸,探討單端初級電感電源轉換器應用於太陽能發電系統之最大功率追蹤與未知組態發光二極體調光控制。詳細介紹分成以下兩部分說明:1)以積分型終端滑模控制方法討論太陽能發電系統之最大功率控制問題,其優點為可以提供有限的系統收斂時間與直流穩態誤差的消除,亦可減少滑模函數所產生的切跳狀況。為達到具有強健性之最大功追蹤控制目的,進一步考慮被動元件存在參數的不確定性與外在干擾,使控制器可保有證強健性。透過模擬與實作結果顯示,以積分型終端滑模設計方式,可有效達到最大功率輸出,並使太陽能板光電能轉換為持在最高效率;2)以T-S模糊模式控制方法應用在未知組態發光二極體調光。透過T-S模糊理論,將電源轉換器表示成模糊規則形式。接著建立估測器以估測電感器電流。此外,並考慮未知組態發光二極體中的不確定性,透過線性矩陣不等式的方法求解得到控制與估測增益。結合T-S模糊控制器與估測器,使其追蹤誤差將會指數收斂到零。由於,該方法提供一種較易實現且受嚴格的穩定性分析,最後從實作結果顯示以T-S模糊無感測器控制,可使未知組態發光二極體下達到調光功能,且有良好的收斂。
There are two main topics of this thesis, including solar power energy conversion and unknown LED number light dimming control. These green energy technologies are achieved via an energy conversion module, SEPIC DC/DC converter. Detailed information can be separated into two parts:1) First, an integral terminal sliding mode control (ITSMC) method is applied in the power tracking issue due to its advantages of finite time convergence, no steady state error, and reduced chattering phenomenon compared with traditional sliding mode control. To ensure the robustness throughout the maximum power tracking process, system parameter uncertainties and external noise are also taken into consideration. Finally, from simulation and experiment results, the terminal sliding mode based controller can efficiently operate the PV array system at the maximum power point.2) On the second part, T-S fuzzy control for unknown LED number light dimming is presented. Based on the T-S fuzzy theory, a fuzzy model of SEPIC converter is obtained such that both control and observer gains can be solved via MATLAB LMI toolbox. Moreover, uncertainties are also considered for unknown LED number light dimming. Due to the strict stability analysis and easy implementation, the LED light dimming control has satisfactory performance and fast convergence.