透過您的圖書館登入
IP:3.135.213.214
  • 學位論文

不飽和聚酯/改質型黏土奈米級複合材料減緩螺紋印之應用及其性質探討

Study on the reducing Print-Through Phenomenon by Unsaturated Polyester/Organic Montmorillinite nanocomposites

指導教授 : 蔡宗燕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 本研究利用天然黏土(CL120)與不同比例有機改質劑氯化苄二甲烴銨(Benzalkonium chloride, BEN)、椰油醯兩性基二丙酸二鈉(Disodium Cocoamphodipropionate, K2)、2-苯基咪唑(2-Phenylimidazole, PI)改質天然黏土,形成可與高分子具有良好相容性的改質型黏土,並利用原位聚合法(In-Situ Polymerization)聚合不飽和聚酯(Unsaturated Polyester, UP)製備成不飽和聚酯/改質型黏土奈米複合材料。再將不飽和聚酯/改質型黏土奈米複合材料利用真空灌注法(Seemann's Composite Resin Infusion Molding Process, SCRIMP)灌注玻璃纖維強化塑膠(Glass Fiber Reinforced Plastics, FRP)模板。 以天然黏土CL120分別以改質劑BEN、K2、PI將天然黏土CL120表面官能化以及離子置換至黏土層間形成CL120-0.5BEN、CL120-0.8BEN、CL120-0.5K2、CL120-0.8K2、CL120-PI、CL120-0.5PI不同改質倍量的改質型黏土,利用廣角X光繞射儀(Wide-angle X-ray Diffraction instrument ,WAXRD)觀察發現經過改質劑進行改質之改質型黏土其層間距皆增加,並以傅立葉轉換紅外光譜儀(Fourier Transform Infrared, FT-IR)鑑定改質型黏土之官能基,證明改質劑確實改質於天然黏土CL120層間及其表面官能化。利用熱重分析儀(Thermal Gravimetric Analyzers, TGA)檢測改質劑存在於天然黏土層間的數量,進而計算出改質型黏土之改質劑理論插層量。根據WAXRD、FT-IR、TGA結果可以證明改質型黏土製備成功,並以此改質型黏土與不飽和聚酯進行聚合,製備出不飽和聚酯/改質型黏土奈米複合材料,將不飽和聚酯/改質型黏土奈米複合材料以穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察發現,UP/CL120-0.5BEN-3%、UP/CL120-0.8BEN-3%以插層方式分散於不飽和聚酯當中,而UP/CL120-0.5K2-3%、UP/CL120-0.8K2-3%為部份插層部份脫層方式分散。而UP/CL120-PI-3%、UP/CL120-0.5PI-3%則為脫層型分散。 將不飽和聚酯/改質型黏土利用阿基米德法檢測其體積收縮率,實驗結果顯示出添加改質型黏土能成功降低不飽和聚酯之體積收縮率,而UP/CL120-0.5K2-3%從原本UP之體積收縮率為10.14 %降低至5.71 %,成功減少了43.7 %體積收縮。以動態機械分析儀(Dynamic Mechanical Analyzer, DMA)探討不飽和聚酯/改質型黏土奈米複合材料的機械性質,而以UP/CL120-PI-5%的結果提升最多,其機械性質從原本純UP為1557 Mpa提升至3229 Mpa,提升了107 %,其餘複材實驗結果也皆有成功提升。在耐熱性質探討的部份,本實驗以TGA檢測複材之熱裂解溫度,以CL120-0.5PI-5%提升最多,從244 ℃提升至286 ℃,提升了17 %。以極限氧指數儀( Limiting Oxygen Index,LOI)檢測結果,以UP/CL120-0.5PI-5%提升最多,從25提升至35,提升了40 %。以圓錐量測儀(Cone Calorimeter)檢測結果以UP/CL120-PI-5%之熱釋放速率降低最多,從839 kW/m2降低至701 kW/m2,降低了15 %。 最後以不飽和聚酯/改質型黏土進行SCRIMP灌注FRP模板,觀察FRP模板表面螺紋印現象,發現其改善程度極佳,並以形狀量測儀檢測表面粗糙度,結果顯示,FRP/UP/CL120-0.5PI-1%降低了47 %。

並列摘要


Abstract This study is about modified clay (CL120) with different proportions of organical agents, such as Benzalkonium chloride (BEN), Disodium Cocoamphodipropionate (K2) and 2-Phenylimidazole (PI).The organic clays as a low profile additive (LPA), were added to unsaturated polyester (UP). This method can form Unsaturated Polyester/organic clay nanocomposites. Then unsaturated polyester/organic clay nanocomposites were prepared through the Seemann’s Composite Resin Infusion Molding Process (SCRIMP) to Fiber Glass Reinforced Plastic (FRP). The modified clay CL120-0.5BEN , CL120-0.8BEN, CL120-0.5K2, CL120-0.8K2, CL120-0.5PI and CL120-PI was identified by Wide-angle X-ray Diffraction instrument (WAXRD), Fourier Transform Infrared (FT-IR), Thermal Gravimetric Analyzers (TGA). It was found organic clays were successfully prepared. Organic clays were added to Unsaturated Polyester and organic clay/Unsaturated Polyester nanocomposites were prepared by polymerization. The UP/CL120-0.5BEN and UP/CL120-0.8BEN were intercalated nanocomposites. Part of UP/CL120-0.5K2, Part of UP/CL120-0.8K2 were intercalacted, and the other part of UP/CL120-0.5K2 and UP/CL120-0.8K2 exfolicated. UP/CL120-PI, UP/CL120-0.5PI was exfoliated nanocomposites. This result was found by Transmission Electron Microscope (TEM). The volume shrinkage experiment was used Archimedes principle. It was found that the volume shrinkage of UP/CL120-0.5K2-3% reduces 43 % (10.14 % to 5.71 %).The Mechanical properties was measured by Dynamic Mechanical Analyzer (DMA). It was found the storage modulus of UP/CL120-PI-5% increased 107 % (1557 Mpa to 3229 Mpa).The fire resistant properties was examined by Limiting Oxygen Index (LOI). The UP/CL120-0.5PI-5% LOI was increased 40 % (25 to 35). The Peak Heat Release Rate (PHRR) was tested by Cone Calorimeter. The UP/CL120-PI-5% PHRR was decreased 16 % (839 kW/m2 to 701 kW/m2). The FRP surface Print-Through Phenomenon (PTP) was improved by applying UP/clay nanocomposites. This result was proved by photography and Form Measuring Instrument (FMI). The UP/CL120-0.5PI-1% surface rough was decreased 47 % from 0.36 µm to 0.19 µm.

並列關鍵字

PTP UP/Clay nanocomposites

參考文獻


1. R. Saito, W. Ming, J. Kan, L. James Lee, “Thickening behaviour and shrinkage control of low profile unsaturated polyester resins”, polymer, 37 (1996) 3567-3576.
2. Liqun Xu and L. James Lee; “Effect of Nanoclay on the Mechanical Properties and Shrinkage Control of Low Profile Unsaturated Polyester Resins Cured at Low Temperatures” , polymer,28 (2004) 2558-2562.
3. Y. J. Huang, S. C. Lee, J. P. Dong, “Effects of Chemical Structure of Polyurethane-Based Low-Profile Additives on the Miscibility, Curing Behavior, Volume Shrinkage, Glass Transition Temperatures, and Mechanical Properties for Styrene/Unsaturated Polyester/Low-Profile Additive Ternary Systems. II: Glass Transition Temperatures and Mechanical Properties”, J. Appl. Polym. Sci., 78 (2000) 558-568.
4. Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, “Effects of Poly(vinyl acetate) and Poly(vinyl chlorideco- vinyl acetate) Low-Profile Additives on Properties of Cured Unsaturated Polyester Resins. I. Volume Shrinkage Characteristics and Internal Pigmentability”, J. Appl. Polym. Sci., 89 (2003) 3336-3346.
5. Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, “Effects of Poly(vinyl acetate) and Poly(vinyl chloride-covinyl acetate) Low-Profile Additives on Properties of Cured Unsaturated Polyester Resins. II. Glass-Transition Temperatures and Mechanical Properties”, J. Appl. Polym. Sci., 89 (2003) 3347-3357.

被引用紀錄


陳欣怡(2013)。無機層材添加於染料敏化太陽能電池電解質中對於電池轉換效率之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300929

延伸閱讀