本研究以葡萄糖、蔗糖與木糖為原料,先以水熱合成法製備出微奈米碳球,再於200-325 oC進行低溫活化以製備吸附劑。在儀器鑑定方面,使用TEM、SEM、XRD、氮吸脫附曲線、FTIR、界達電位儀等儀器及量測結果來分別觀察活化過程中材料之表面型態、微結構、孔洞結構(表面積、孔隙體積及孔洞大小分布)、表面官能基及表面電性隨活化溫度之變化情形。在吸附測試方面,量測ㄧ種鹼性染料分子(MG5)、一種酸性染料分子(AR1)及兩種重金屬離子(Cu2+ 及Pb2+)在經由不同活化溫度製備所得之碳球上之吸附量以探討其吸附應用潛能。研究結果發現,低溫活化並無法使碳球之比表面積及孔隙體積大幅增加。在吸附測試方面,對MG5來說,以葡萄糖、蔗糖及木糖為原料製備所得之碳球其最大之吸附量分別為123.9、46.1 及78.9 mg/g。對AR1來說,由於碳球之表面電性和AR1之電性相斥,因此吸附量相當小。對銅離子來說,以葡萄糖、蔗糖及木糖為原料製備所得之碳球其最大之吸附量分別為46.6、41.2 及37.3 mg/g。對鉛離子來說,以葡萄糖、蔗糖及木糖為原料製備所得之碳球其最大之吸附量分別為194.6、170.0 及167.7 mg/g。對於吸附平衡曲線而言,Langmuir模式較適合用於描述兩種重金屬陽離子之吸附,而Freundlich模式則較適合用於描述MG5之吸附。在吸附動力曲線方面,擬二階吸附動力模式可適當描述各種吸附質在碳球上之吸附動力過程。
The object of this research was to examine the synthesis, characterization, and application of carbon micro/nanospheres. The carbon micro/nanospheres was first hydrothermally synthesized with different carbon sources (glucose, sucrose, and xylose) at concentration 1.5 M, synthesis temperature 190 oC and reaction time 48 h. The hydrothermal derived carbon spheres were then calcined at lower temperature 200-325 oC in air. Effects of preparation conditions on the revolution of microstructure and surface chemistry characteristics of carbon spheres were characterized with SEM, XRD, nitrogen isotherms, FTIR, and zeta potential. For adsorption experiments, the adsorption capacities of one basic dyes (MG5), one acid dye (AR1), and two heavy metal ions (Cu2+ and Pb2+) on the carbon spheres were measured. It was found that thermal treatment in air cannot induce the significant increase in the surface area and pore volume of carbon spheres. For MG5 (Cu2+, and Pb2+), the maximum adsorption capacity of carbon spheres derived from glucose, sucrose, and xylose may reach 123.9 (46.6, 194.6), 46.1 (41.2, 170.0), and 78.9 (37.3, 167.7) mg/g, respectively. Since the repulsive force between the surface of carbon spheres and AR1, the adsorption capacity of AR1 on carbon spheres was very small. The adsorption equilibrium data of heavy metal ions (MG5) can be well described with the Langmuir model (Freundlich model). The adsorption kinetics followed the pseudo-second-order model.