透過您的圖書館登入
IP:18.119.157.39
  • 學位論文

磁性奈米流體阻尼器之減震消能研究

Research on the vibration energy dissipation of magnetic nanofluid dampers

指導教授 : 翁輝竹
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 本論文完成磁性奈米流體阻尼器之減震消能分析。主要目的在探討流道深寬比、粒子體積分率及磁場強度等參數對磁性奈米流體阻尼器之受力運動、振動頻率及響應時間的影響。首先,我們完成了水基磁性奈米流體之化學配製,並量測流體之體積分率。接著,我們完成了阻尼測試系統之設計,並以實驗量測系統之受力情形。最後,我們將實驗測得之數據計算出阻尼流體之阻尼係數,並透過阻尼系統運動方程式完成阻尼系統之運動數學模型,進而探討不同參數之效應。 研究結果發現,阻尼器之流道深寬比、粒子體積分率及磁場強度等參數對阻尼係數的影響甚大,當深寬比及體積分率增加則阻尼係數可呈劇烈成長;當磁場強度增加則阻尼係數呈現近似線性成長。阻尼係數的增加可使得阻尼器受力運動趨緩,進而致使振動頻率降低且響應時間減短。

並列摘要


Abstract This paper presents a study on the vibration energy dissipation analysis of magnetic nanofluid dampers. The main purpose is to investigates duct aspect ratio, particle volume fraction, and the magnetic field strength on forced motion, vibration frequency, and response time of magnetic nanofluid dampers. First, we complete the chemical preparation of water-based magnetic nanofluids, and determine the volume fraction of nanofluids. Then, we complete a damping test system design, and experimentally measure forced situation of the system. Finally, we use experimental data to obtain the damping coefficient of the damping fluids, and through the equation of motion of the damping system to complete mathematical model of the motion, and then study the effect of various parameters on the damping system. Results reveal that the duct aspect ratio, particle volume fraction, and the magnetic field strength of the damper have a significant effect on the damping coefficient. The duct aspect ratio and the volume fraction can lead to the dramatic growth, and the magnetic field strength can result in the linear growth. It is found that increasing damping coefficient can reduce the forced motion, so as to decrease the vibration frequency and the response time.

參考文獻


Nakatsuka, K., Yokoyama, H., Shimoiizaka, J., and Funaki, T., 1987, “Damper application of magnetic fluid for a vibration isolating table,” J. Magn. Magn. Mater., 65, 359–362.
Parlak, Z. and Engin, T., 2012, “Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation,” Int. J. Mech. Sci., 64, 22–31.
Parlak , Z., Engin , T., and Çallı İ., 2012, “Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field,” Mechatronics , 22, 890–903.
Yao , G. Z. , Yap, F. F. , Chen, G., Li, W. H., and Yeo, S. H., 2002, “MR damper and its application for semi-active control of vehicle suspension system,” Mechatronics, 12, 963–973.
郭銘修, 2005, 低功率磁流變阻尼器物理特性之研究, 碩士論文, 土木工程學系, 國立成功大學.

延伸閱讀