透過您的圖書館登入
IP:3.22.51.241
  • 學位論文

含磺酸根和亞胺基苯並三唑苯酚氧配位基修飾之鋅及鈦錯合物合成、結構鑑定及其於環酯類開環聚合反應之催化研究

Synthesis and Structural Determination of Zinc and Titanium Complexes Supported by Sulfonate and Imino-Benzotriazole Phenoxide Ligand:Catalytic Studies for Ring-Opening Polymerization of Cyclic Esters

指導教授 : 柯寶燦 陳志德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為了符合單一活化中心的設計概念,本論文利用磺酸化反應(Sulfonate reaction)將含有BBTP雙氧配位基(BBTP-H2 = 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol),形成有磺酸根官能基的配位基,使其為帶 -1價之配位基HBBTP(OS)-H(A)、CH3BBTP(OS)-H (B)、OMeBBTP(OS)-H (C)與CF3BBTP(OS)-H (D)。利用上述磺酸化後的配位基與二乙基鋅在1:1的條件下反應生成錯合物[HBBTP(OS)ZnEt] (1)、[CH3BBTP(OS)ZnEt] (2)、[OMeBBTP(OS)ZnEt] (3)與[CF3BBTP(OS)ZnEt] (4)。經由1H NMR、13C NMR、元素分析及LC-ESI-MS可得知成功合成出錯合物(1)-(4)。將錯合物(2)-(4)在外加9-蒽甲醇(9-AnOH)的條件下分別對環己內酯、環丁內酯以及左旋乳酸交酯進行開環聚合反應,皆有良好的催化活性,並具有活性聚合(living)和immortal的性質。其中,在環己內酯的開環聚合反應中,錯合物(4)>(3)>(2),可能原因在於錯合物(4)配位基上之CF3基團為一拉電子基而造成Zn2+金屬具有較高的路易士酸性,因此錯合物(4)呈現較佳活性。另外,更進一步地利用錯合物(4)對環己內酯、環丁內酯以及左旋乳酸交酯進行開環聚合反應的實驗結果,做反應速率差異的探討。另一方面,將錯合物(4)對外消旋乳酸交酯進行立體選擇性的探討,發現其聚合狀態傾向atactic,最佳的Pr 值為0.50;錯合物(4)對環丁內酯進行立體選擇性的探討,聚合狀態傾向atactic (Pr = 0.46)。   另外,本論文利用Duff reaction 將苯並三唑苯酚(benzotriazole phenol,BTP-H),形成有醛官能基的配位基C1AldBTP-H,分別與N, N-dimethylethylenediamine、N-(2-Aminoethyl)piperidine、2-(Aminomethyl)pyridine、Furfurylamine、2-Methoxyethylamine經亞胺基化(imination)反應,形成含亞胺的配位基C1NNIBTP-H (E)、C1PPIBTP-H (F)、C1PrIBTP-H (G)、C1FuIBTP-H (H)、C1NOIBTP-H (I)。將配位基(E)與四異丙氧基鈦在1:1的條件下反應生成單取代六配位鈦[(C1NNIBTP)Ti(OiPr)3] (5)。經由1H NMR、13C NMR、元素分析及單晶X-ray繞射儀鑑定證明其結構。將錯合物(5)分別對環己內酯及左旋乳酸交酯進行開環聚合反應,皆有良好的催化活性,並具有活性聚合(living)和immortal的性質。另外,更進一步地利用錯合物(5)對環己內酯、環丁內酯以及左旋乳酸交酯進行開環聚合反應的實驗結果,做反應速率差異的探討。另一方面,將錯合物(5)對外消旋乳酸交酯進行立體選擇性的探討,聚合狀態傾向atactic,最佳的Pr 值為0.50。   在配位基(H)及(I)與四異丙氧基鈦在1:1的條件下反應生成推測具有雙取代六配位鈦錯合物[(C1FuIBTP)2Ti(OiPr)2] (6)、[(C1NOIBTP)2Ti(OiPr)2] (7)。經由1H NMR、13C NMR、元素分析鑑定證明其結構。將錯合物(5)分別對環己內酯及左旋乳酸交酯進行開環聚合反應的最佳條件,與錯合物(6)-(7) 進行開環聚合反應,由實驗結果可以得知反應速率錯合物(5)>(6)>(7)。

並列摘要


Four novel sulfonate phenol ligands, HBBTP(OS)-H (A), CH3BBTP(OS)-H (B), OMeBBTP(OS)-H (C) and CF3BBTP(OS)-H (D), have been prepared by the sulfonylation ) with one molar equiv of the corresponding 4-substituted benzenesulfonyl chloride in the presence of excess triethylamine. Zinc (Zn) complexes supported by sulfonate phenoxide ligands have been synthesized and characterized by microanalyses. The reaction of diethyl zinc (ZnEt2) with one equivalent amount of RBBTP(OS)-H (R=H, CH3, OMe and CF3) produces the monomeric zinc complex [HBBTP(OS)ZnEt] (A), [CH3BBTP(OS)ZnEt] (B), [OMeBBTP(OS)ZnEt] (C) and [CF3BBTP(OS)ZnEt] (D). Catalysis for ring-opening polymerization (ROP) of -caprolactone (-CL), -butyrolactone (-BL) and L-Lactide (L-LA) of complexes (2)-(4) are investigates. Zinc complexes (2)-(4) catalyze the ring-opening polymerization of -CL in the presence of 9-anthracenemethanol (9-AnOH) with efficient catalytic activities in a controlled fashion. In -CL polymerization, the activity of complex (4) is higher than that of complex(3) and (2), which is probably due to the higher Lewis acidity of Zn2+ metal caused by electron-withdrawing substitute, trifluoromethyl(-CF3) on the 4-position of the benzenesulfonate group. Additionally, polymerization of -BL and L-LA catalyzed by complex (4) is demonstrated in a“living”and“immortal”character with the expected molecular weights and narrow molecular weight distributions. To examine stereoselectivity of PLA, complex (4) was employed as catalysts toward ROP of rac-LA. Experimental results exhibit that complex (4) catalyzes rac-LA to produce atactic PLA (Pr = 0.50). Furthermore, complex (4) catalyzes -BL to yield atactic PHB (Pr = 0.46). We also investigate the reaction rate of ring-opening polymerization by complex (4) in the presenceof 9-AnOH catalyzes -CL, -BL and L-LA.   Three imino-benzotriazole phenoxide ligand, C1NNIBTP-H (E), C1PPIBTP-H (F), C1PrIBTP-H (G), C1FuIBTP-H (H), C1NOIBTP-H (I) have been prepared in good yield(≧70%) from the condensation of 3-(2H-benzotriazol-2-yl)-2-hydroxy-5-methyl benzaldehyde (C1AldBTP-H) with N, N-dimethylethylenediamine, N-(2-Aminoethyl)piperidine, 2-(Aminomethyl)pyridine, Furfurylamine and 2-Methoxyethylamine (1.1 equiv.) inether solvent. Titanium catalysts supported by imino-benzotriazole phenoxide ligands were characterized by microanalyses as well assingle-crystal X-ray structural determinations. The reaction of Titanium isopropoxide (Ti(OiPr)4) with C1NNIBTP-H yields six-coordinated monomeric titanium complex [(C1NNIBTP)Ti(OiPr)3] (5). Catalysis for ROP of -CL, -BL and L-LA of complex (5) is investigated. Titanium complex (5) catalyze the ROP of -CL in the presence of isopropanol (IPA) with efficient catalytic activities in a controlled manner. Additionally, polymerizations of L-LA catalyzed by complex (5) is demonstrated in a“living”and“immortal”character with the expected molecular weights and narrow polydispersity indexes (PDIs). To examine stereoselectivity of PLA, complex (5) was employed as catalysts toward ROP of rac-LA. Experimental results exhibit that complex (5) catalyzes rac-LA to produce atactic PLA (Pr = 0.50). We also investigate the reaction rate of ring-opening polymerization by complex (5) in the presenceof IPA catalyzes -CL, -BL and L-LA.   The reaction of Titanium isopropoxide (Ti(OiPr)4) with C1FuIBTP-H, C1NOIBTP-H yields six-coordinated dinuclear titanium complex [(C1FuIBTP)2Ti(OiPr)2] (6) and [(C1NOIBTP)2Ti(OiPr)2] (7). Complexes (6)-(7) were characterized by 1H and 13C NMR spectroscopy, elemental analyses determinations. Titanium complex (5) catalyze the ROP of -CL and L-LA in the presence of isopropanol (IPA) with optimal conditions. Each of complex (6)-(7) catalyze the ROP of -CL and L-LA. In -CL and L-LA polymerization, the activity of complex (5) is higher than that of complex (6) and (7).

參考文獻


1. Narayan, R.; Barengerg, S. A.; Brash, J. L.; Redpath, A. E. Degradable Materials: Perspectives, Issues and Opportunities, CRC, Boston, 1990, Introduction, pp. 1-37.
6. O’Keefe, B.; Hillmyer, M. A.; Tolman, W. B. J. Chem. Soc., Dalton Trans. 2001, 2215.
7. Dittrich, W.; Schulz, R. C. Angew. Makromol. Chem. 1971, 15, 109.
8. Kricheldorf, H. R.; Berl, M.; Scharnagl, N. Macromolecules 1988, 21, 286
13. Chisholm, M. H.; Gallucci, J. C.; Zhen H. Inorg. Chem. 2001,40,5051

延伸閱讀