透過您的圖書館登入
IP:13.58.150.59
  • 學位論文

四氧化三鐵奈米材料之運動行為控制及其在模擬血栓清除上之應用

The motion control of Fe3O4 nanomaterial and Its application on vessel embolism cleaning in vitro

指導教授 : 章明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


腦中風與心血管疾病為國人十大死因中之第二位,此種疾病主要為高血脂症所引起,血脂將會沉積於動脈內層血管壁進而引起發炎反應,持續沉積的情況下將使血管內徑縮小,此時會因生物機制或血流壓力因素造成血管壁破裂進而產生血栓阻礙血流;有鑒於此,本研究擬整合交變與靜態磁場,建構一套可於血管內誘發磁性材料產生動能的磁性操控技術與系統,以達到清除血栓之目的。   由於奈米級四氧化三鐵材料具備超順磁性及對人體無毒且生物相容性高,本研究透過控制奈米級四氧化三鐵材料之團聚尺寸及其運動模式,已設計完成一套於體外執行血栓清除之架構。此架構係使用單顆電磁鐵線圈及永久磁鐵,首先透過永久磁鐵產生靜態磁場及磁場梯度,將磁性材料磁化後,奈米微粒會團聚為微米線並產生平移運動,再將電磁鐵線圈通以交流電源,即可產生一交變震盪磁場,使磁性材料沿磁力線產生旋轉運動。實驗結果指出奈米材料團聚尺寸與均勻靜磁場強度關係約為平方正比,其長寬比分布約為9 ~ 13之間;此外,微米線轉動速度與交變磁場強度關係約為平方正比,移動速度與靜磁場強度以及磁場梯度的乘積關係約為線性單調上升,與理論分析趨勢有良好一致性。在體外血栓清除實驗部分,利用微影製程製作微流管以模擬動脈血管,因病變後動脈管徑約0.5~1.3 mm,本研究取管徑平均值0.8 mm做為模擬實驗條件,並設定視野範圍總體面積為0.124 mm2,在交變磁場強度約624 A/m、磁場梯度約3.2 T/m之磁場條件下,沿長軸及短軸旋轉運動之磁性材料可在約5秒時分別清除約0.055 mm2及0.047 mm2之血塊區域,此結果初步證實利用本研究之磁性操控技術可達到血栓清除之功能。

並列摘要


High cholesterol will cause cardiovascular disease, which is the second leading cause of death in Taiwan. High level of low-density lipoprotein (LDL) in blood will deposit in the inner vascular wall. If the LDL deposit continually the blood vessel will become narrow and the vascular wall can be damaged because of the formation of thrombus. This study will develop a magnetic manipulation system (MMS) to control the Fe3O4 nanomaterial for removal of thrombus.   The MMS is composed of permanent magnets and an electromagnetic coil. The static magnetic field generated by the permanent magnets will magnetize the nanoparticles to form microwires, which move in a liquid suspension through the gradient field. The electromagnetic coil connects to an alternating current source thereby producing an oscillating field to rotate the microwires. A high speed camera attached to a microscope tracks the motion of the microwires. Video recordings are captured and loaded to a computer. The control parameters of the motion and size of the Fe3O4 in the MMS are identified. By suspending the nanoparticles in water, the experiment show that aspect ratio of the length and width of the microwire is proportional to the square of the magnitude of the static magnetic field. Meanwhile, the translation speed of the microwires is found to be linearly dependent on the product of the static field strength and gradient magnetic field. Moreover, the rotation speed of the microwires is proportional to the square of the oscillating field strength. The results are in good agreement with the theoretical model of the MMS. The model system for thrombus removal application uses a 0.8mm diameter microchannel fabricated by photolithography to simulate a blood vessel. Blood droplets are allowed to dry in the microchannel to clog fluid flow and simulate a thrombus. By injecting the nanoparticles on one side of the microchannel and controlling the motion towards the thrombus, microwires rotating on their long axis are able to remove 0.055mm2 thrombus in 5 seconds with an alternating field strength of 624 A/m and gradient field strength of 3.2T/m. Similarly, microwires rotating on their short axis are able to remove 0.047 mm2 thrombus demonstrating the potential of Fe3O4 nanomaterial for thrombus removal using the proposed MMS.

參考文獻


[27] 許世璁,“微磁性粒子操控之力學探討實驗研究,”國立交通大學機械工程研究所碩士論文, 2011.
[2] S. A. Lubbe, C. Alexiou, and C. Bergemann, Clinical applications of magnetic drug targeting, Journal of surgical research 95(2001) 200-206.
[3] M. Danckwerts and A. Fassihi, Implantable controlled release drug delivery systems: a Review, Drug Development and Industrial Pharmacy 17(1991) 1465-1502.
[4] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics 36 (2003) R167-R181.
[5] R. Kotitz, W. Weitschies, L. Trahms, W. Brewer, and W. Semmler, Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles, J. Magn. Magn. Mater. 194 (1999) 62-68.

延伸閱讀