透過您的圖書館登入
IP:18.225.117.183
  • 學位論文

應用六標準差法提高沸石吸附濃縮效率

Applying Six Sigma Approach to Increase Efficiency of Regenerative Thermal Oxidize

指導教授 : 蔡瑞益
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來光電業於產業中之竸爭激烈,各家產業除極力降低成本外,開發各項新型產品也不遺餘力;而在製程中使用大量有機溶劑所產生的VOCs (揮發性有機溶劑)廢氣,處理設備的效率為非常重要,沸石吸附濃縮轉輪焚化系統處理 VOCs 廢氣,應用在光電半導體製造業已經有多年歷史,使用沸石吸附濃縮轉輪焚化系統來控制其所排放VOCs廢氣,其處理效能均可達90% 以上,是目前被公認最適合光電相關製造業處理高排氣量、低VOCs濃度廢氣且符合半導體空污法規最穩定之設備。 沸石吸附濃縮轉輪系統在實際操作運轉中,有許多的運轉參數會影響到系統的效率,適當且適時的調整參數,除了可以提高效率外,更可以達到節能的目的,而本研究運用六標準差專案手法的DMAIC流程步驟,進行沸石吸附濃縮轉輪相關參數研究探討;首先找出影響效率的因子,再利用實驗設計的方式進行實驗,最後選定兩組影響效率最高的因子、脫附溫度及脫附風量,進行運轉參數最佳化,最終本專案執行改善後,初始轉輪運轉效率為95.8%,經由六標準差實際執行改善結果提升至97.4%,總共提升效率2.1%,並將運轉相關參數標準化,以降低運轉操作人員失誤。 以DMAIC六標準差專案管理的流程進行改善,其結果顯示於沸石吸附濃縮轉輪於特定參數中運轉可提高處理效率,以及可節約燃氣達到節能之效果,除可提高運轉效率及降低運轉成本外,更可達到空污減廢的目的。

並列摘要


In recent years, due to the intense competition in the TFT-LCD industry, most of them rather develop new product more than cost down. The efficiency of processed equipment is important when the plenty usage of Transistor-Liquid which would product VOCs pollution. The Regenerative Thermal Oxidize in the VOCs pollution has been utilized many years. VOCs pollution can be controlled by system of Regenerative Thermal Oxidize. The effectiveness of the system is above 90 precent. It is the most stable equipment in the TFT-LCD and relative industry with The air pollution control and emissions standards for the Semiconductor industry for processing the high air displacement and the pollution of VOCs. The actual running parameter of Regenerative Thermal Oxidize will affect the efficiency. To adjust the parameter in the right way and moment will not only raise the efficiency, also the energy conservation. This research use the practices of Six Sigma project DMAIC process steps to find out the best parameter in the Regenerative Thermal Oxidize. First of all, to find out the effective factors. Then, using the method of experimental design to do experiment. Two parameters which are the most effective influence have been picked as temperature-programmed desorption and input air-programmed desorption. To find out the best parameter combination of the process, and to improve the best factor of process ability. In this case, the initial running efficiency is 95.8%. After go through the six sigma project, the result improve to 97.4%. The sum raised 2.1%. Finally, Standardization of the best factor is the key control item to reduce the mis-operation mistakes. Using Six Sigma project DMAIC process steps to improve process can make the key effective process of the Regenerative Thermal Oxidize within specialized parameters. The best factor combination can raise the running rate with lower cost and achieve the purpose of energy saving and carbon reduction.

參考文獻


[21] 余遠伸 (2012),「六標準差法應用在改善彩色濾光片之破片」,中原大學機械工程學系,碩士論文。
[4] Harry, Mikel J.and Lawson, J. Ronald .(1992) , Six Sigma Producibility Analysis and Process Characterization, Reading, Mass: Addison-Wesley.
[5] Harry, Mikel J.and Schroeder, Richard . (2000) , Six Sigma: the Breakthrough Management Strategy Revolutionizing the Worlds Top Corporations, New York: Currency.
[10] 黨寧馨 (2008),「以行銷方法導入六標準差之研究-以某TFT-LCD平面顯示器製造公司為例」,國立中央大學工業管理研究所碩士在職專班碩士論文。
[11] 鄭欣如 (2004),「建構六標準差與精實生產方式應用於服務業之整合模式」,中原大學工業工程學系,碩士學位論文。

延伸閱讀