透過您的圖書館登入
IP:3.139.81.58
  • 學位論文

磷化銦鎵磊晶層加入表面活化劑銻之光學特性研究

Optical properties of surfactant Sb incorporation to InGaP epilayer

指導教授 : 廖森茂

摘要


在本論文中,我們利用有機化學氣相沉積法在鍺基板上成長磷化銦鎵磊晶層,並藉由添加表面活化劑銻來研究其材料光學特性的改變。 首先,我們針對未添加銻的樣品CCC與添加銻的樣品AAA做變溫光激螢光實驗(15K~300K),並觀察其發光位置。我們發現AAA的發光位置會隨著溫度的上升而有轉移的現象產生。接著,我們利用速率方程式(方程式3-4)證明AAA確實有載子轉移的現象並且得到其低能量的活化能。再來,我們利用光激螢光與時間解析光譜並透過方程式4-2擬合出在15K時CCC與AAA的載子的侷限深度、漂移邊界與激子生命期。我們發現AAA的侷限深度與其低能量的活化能皆為5meV。 最後,比較CCC與AAA的侷限深度、漂移邊界與激子生命期,發現數值皆有增加的趨勢,推測其原因可能是加入銻後,使其能帶圖變的較不平所造成。

關鍵字

活化能 侷限深度

並列摘要


In this study, we grow InGaP epilayer on Ge substrate by metal organic chemical vapor deposition (MOCVD) and investigate the effect of surfactant Sb incorporating into InGaP epilayer. First, the temperature dependence of PL (15K ~ 300K) has been done in sample CCC (without Sb) and sample AAA (with Sb), and observe the luminescence position with increasing temperature. We find out that the luminescence position of sample AAA will be transferred with increasing temperature. Next, we use rate equation (equation 3-4) to prove that carriers of sample AAA indeed transferred and obtain the activation energy of low energy one. Then, we use PL, TRPL and equation 4-2 to calculate the localization depth, mobility edge and exciton lifetime of sample CCC and AAA in 15K. We find out that the localization depth and low energy activation energy of sample AAA are both 5meV. Finally, compare to sample CCC and sample AAA, we find out that all the values (localization depth, mobility edge and exciton lifetime) are increased after incorporating Sb. We speculate that the reason may be uneven energy band which is caused by Sb.

參考文獻


[2] L. J. Mawst, A. Bhattacharya, J. Lopez, D. Botez, D. Z. Garbuzov, L. DeMarco, J. C. Connolly, M. Jansen, F. Fang, and R. F. Nabiev, “8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers”, Appl. Phys. Lett. 69, 1532 (1996).
[3] T. Kobayashi, K. Taira, F. NakaMua, and H. Kawai, “Band lineup for a GaInP/GaAs heterojunction measured by a high‐gain Npn heterojunction bipolar transistor grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 65, 4898 (1989).
[4] T. Ohori, M. Takeshi, M. Suzuki, M. Takikawa, and J. Komeno, “Uniform and abrupt InGaP/GaAs selectively doped heterostructures grown by MOVPE for HEMT ICs”, J. Crystal Growth 93, 905 (1988).
[6] C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. J. Brown, “Aluminum free GaInP/GaAs quantum well infrared photodetectors for long wavelength detection” Appl. Phys. Lett. 70, 360 (1997).
[7] B. C. Chung, G. F. Virshup, S. Hikidi, and N. R. Kaminar, “27.6% efficiency (1 sun, air mass 1.5) monolithic Al0.37Ga0.63As/GaAs two‐junction cascade solar cell with prismatic cover glass”, Appl. Phys. Lett. 55, 1741 (1989).

延伸閱讀